MCF51EM256CLL Freescale Semiconductor, MCF51EM256CLL Datasheet - Page 435

IC MCU 32BIT 256KB FLASH 100LQFP

MCF51EM256CLL

Manufacturer Part Number
MCF51EM256CLL
Description
IC MCU 32BIT 256KB FLASH 100LQFP
Manufacturer
Freescale Semiconductor
Series
MCF51EMr
Datasheets

Specifications of MCF51EM256CLL

Core Processor
Coldfire V1
Core Size
32-Bit
Speed
50MHz
Connectivity
I²C, SCI, SPI
Peripherals
LCD, LVD, PWM, WDT
Number Of I /o
63
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 16x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Processor Series
MCF51EM
Core
ColdFire V1
Data Bus Width
32 bit
Data Ram Size
16 KB
Interface Type
RS-232, LIN
Maximum Clock Frequency
50 MHz
Number Of Timers
3
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
JLINK-CF-BDM26, EWCF
Development Tools By Supplier
DEMOEM
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MCF51EM256CLL
Manufacturer:
FREESCALE
Quantity:
110
Part Number:
MCF51EM256CLL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
8-Bit Modulo Timer (MTIM)
18.4
Functional Description
The MTIM is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector,
and a prescaler block with nine selectable values. The module also contains software selectable interrupt
logic.
The MTIM counter (MTIMxCNT) has three modes of operation: stopped, free-running, and modulo. Out
of reset, the counter is stopped. If the counter is started without writing a new value to the modulo register,
then the counter will be in free-running mode. The counter is in modulo mode when a value other than $00
is in the modulo register while the counter is running.
After any MCU reset, the counter is stopped and reset to $00, and the modulus is set to $00. The bus clock
is selected as the default clock source and the prescale value is divide by 1. To start the MTIM in
free-running mode, simply write to the MTIM status and control register (MTIMxSC) and clear the MTIM
stop bit (TSTP).
Four clock sources are software selectable: the internal bus clock, the fixed frequency clock (XCLK), and
an external clock on the TCLK pin, selectable as incrementing on either rising or falling edges. The MTIM
clock select bits (CLKS1:CLKS0) in MTIMxSC are used to select the desired clock source. If the counter
is active (TSTP = 0) when a new clock source is selected, the counter will continue counting from the
previous value using the new clock source.
Nine prescale values are software selectable: clock source divided by 1, 2, 4, 8, 16, 32, 64, 128, or 256.
The prescaler select bits (PS[3:0]) in MTIMxSC select the desired prescale value. If the counter is active
(TSTP = 0) when a new prescaler value is selected, the counter will continue counting from the previous
value using the new prescaler value.
The MTIM modulo register (MTIMxMOD) allows the overflow compare value to be set to any value from
$01 to $FF. Reset clears the modulo value to $00, which results in a free running counter.
When the counter is active (TSTP = 0), the counter increments at the selected rate until the count matches
the modulo value. When these values match, the counter overflows to $00 and continues counting. The
MTIM overflow flag (TOF) is set whenever the counter overflows. The flag sets on the transition from the
modulo value to $00. Writing to MTIMxMOD while the counter is active resets the counter to $00 and
clears TOF.
Clearing TOF is a two-step process. The first step is to read the MTIMxSC register while TOF is set. The
second step is to write a 0 to TOF. If another overflow occurs between the first and second steps, the
clearing process is reset and TOF will remain set after the second step is performed. This will prevent the
second occurrence from being missed. TOF is also cleared when a 1 is written to TRST or when any value
is written to the MTIMxMOD register.
The MTIM allows for an optional interrupt to be generated whenever TOF is set. To enable the MTIM
overflow interrupt, set the MTIM overflow interrupt enable bit (TOIE) in MTIMxSC. TOIE should never
be written to a 1 while TOF = 1. Instead, TOF should be cleared first, then the TOIE can be set to 1.
MCF51EM256 Series ColdFire Integrated Microcontroller Reference Manual, Rev. 8
Freescale Semiconductor
18-7

Related parts for MCF51EM256CLL