MPC561MZP56 Freescale, MPC561MZP56 Datasheet - Page 1311

MPC561MZP56

Manufacturer Part Number
MPC561MZP56
Description
Manufacturer
Freescale
Datasheet

Specifications of MPC561MZP56

Cpu Family
MPC56x
Device Core
PowerPC
Device Core Size
32b
Frequency (max)
56MHz
Interface Type
QSPI/SCI/SPI/UART
Total Internal Ram Size
32KB
# I/os (max)
56
Number Of Timers - General Purpose
22
Operating Supply Voltage (typ)
2.6/5V
Operating Supply Voltage (max)
2.7/5.25V
Operating Supply Voltage (min)
2.5/4.75V
On-chip Adc
2(32-chx10-bit)
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 125C
Operating Temperature Classification
Automotive
Mounting
Surface Mount
Pin Count
388
Package Type
BGA
Program Memory Type
ROMLess
Program Memory Size
Not Required
Lead Free Status / RoHS Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MPC561MZP56
Manufacturer:
FREESCALE
Quantity:
852
Part Number:
MPC561MZP56
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MPC561MZP56
Manufacturer:
FREESCALE
Quantity:
852
Company:
Part Number:
MPC561MZP56
Quantity:
13
Part Number:
MPC561MZP56R2
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
R
case to ambient thermal resistance, R
a heat sink, change the mounting arrangement on printed circuit board, or change the thermal dissipation
on the printed circuit board surrounding the device. This description is most useful for ceramic packages
with heat sinks where about 90% of the heat flow is through the case to the heat sink to ambient. For most
packages, a better model is required.
The simplest thermal model of a package which has demonstrated reasonable accuracy (about 20 percent)
is a two resistor model consisting of a junction to board and a junction to case thermal resistance. The
junction to case covers the situation where a heat sink will be used or where a substantial amount of heat
is dissipated from the top of the package. The junction to board thermal resistance describes the thermal
performance when most of the heat is conducted to the printed circuit board. It has been observed that the
thermal performance of most plastic packages and especially PBGA packages is strongly dependent on the
board. temperature.
If the board temperature is known, an estimate of the junction temperature in the environment can be made
using the following equation:
where:
If the board temperature is known and the heat loss from the package case to the air can be ignored,
acceptable predictions of junction temperature can be made. For this method to work, the board and board
mounting must be similar to the test board used to determine the junction to board thermal resistance,
namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground
plane.
When the board temperature is not known, a thermal simulation of the application is needed. The simple
two-resistor model can be used with the thermal simulation of the application (2), or a more accurate and
complex model of the package can be used in the thermal simulation. Consultation on the creation of the
complex model is available.
To determine the junction temperature of the device in the application after prototypes are available, the
thermal characterization parameter (Ψ
measurement of the temperature at the top center of the package case using the following equation:
where:
The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC
using a 40 gauge type-T thermocouple epoxied to the top center of the package case. The thermocouple
Freescale Semiconductor
θJC
is device related and cannot be influenced. The user controls the thermal environment to change the
T
T
R
P
T
T
Ψ
P
D
D
J
B
J
T
θJB
JT
= T
= T
= thermocouple temperature on top of package (°C)
= board temperature (°C)
= power dissipation in package (
= power dissipation in package
= thermal characterization parameter
= package junction to board resistance (°C/W)
B
T
+ (Ψ
+ (R
θJB
JT
x P
x P
D
D
)
)
MPC561/MPC563 Reference Manual, Rev. 1.2
θCA
JT
) can be used to determine the junction temperature with a
. For instance, the air flow can be changed around the device, add
)
66-MHz Electrical Characteristics
G-5

Related parts for MPC561MZP56