LPC1767FBD100,551 NXP Semiconductors, LPC1767FBD100,551 Datasheet - Page 371

IC ARM CORTEX MCU 512K 100-LQFP

LPC1767FBD100,551

Manufacturer Part Number
LPC1767FBD100,551
Description
IC ARM CORTEX MCU 512K 100-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1767FBD100,551

Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
100MHz
Connectivity
Ethernet, I²C, IrDA, Microwire, SPI, SSI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
70
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 8x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Processor Series
LPC17
Core
ARM Cortex M3
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2, MCB1760, MCB1760U, MCB1760UME
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
568-4967
935289808551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1767FBD100,551
Quantity:
9 999
Part Number:
LPC1767FBD100,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
UM10360
User manual
16.8.2 Sleep mode
16.8.3 Interrupts
16.8.4 Transmit priority
recessive bits). Software can monitor this countdown by reading the Tx Error Counter.
When this countdown is complete, the CAN Controller clears BS and ES in CANxSR, and
sets EI in CANxSR if EIE in IER is 1.
The Tx and Rx error counters can be written if RM in CANxMOD is 1. Writing 255 to the
Tx Error Counter forces the CAN Controller to Bus-Off state. If Bus-Off (BS in CANxSR) is
1, writing any value 0 through 254 to the Tx Error Counter clears Bus-Off. When software
clears RM in CANxMOD thereafter, only one Bus Free condition (11 consecutive
recessive bits) is needed before operation resumes.
The CAN Controller will enter sleep mode if the SM bit in the CAN Mode register is 1, no
CAN interrupt is pending, and there is no activity on the CAN bus. Software can only set
SM when RM in the CAN Mode register is 0; it can also set the WUIE bit in the CAN
Interrupt Enable register to enable an interrupt on any wake-up condition.
The CAN Controller wakes up (and sets WUI in the CAN Interrupt register if WUIE in the
CAN Interrupt Enable register is 1) in response to a) a dominant bit on the CAN bus, or b)
software clearing SM in the CAN Mode register. A sleeping CAN Controller that wakes up
in response to bus activity is not able to receive an initial message until after it detects
Bus_Free (11 consecutive recessive bits). If an interrupt is pending or the CAN bus is
active when software sets SM, the wake-up is immediate.
Upon wake-up, software needs to do the following things:
If the LPC17xx is in Deep Sleep or Power-down mode, CAN activity will wake up the
device if the CAN activity interrupt is enabled. See
Each CAN Controller produces 3 interrupt requests, Receive, Transmit, and “other status”.
The Transmit interrupt is the OR of the Transmit interrupts from the three Tx Buffers. Each
Receive and Transmit interrupt request from each controller is assigned its own channel in
the NVIC, and can have its own interrupt service routine. The “other status” interrupts from
all of the CAN controllers, and the Acceptance Filter LUTerr condition, are ORed into one
NVIC channel.
If the TPM bit in the CANxMOD register is 0, multiple enabled Tx Buffers contend for the
right to send their messages based on the value of their CAN Identifier (TID). If TPM is 1,
they contend based on the PRIO fields in bits 7:0 of their CANxTFS registers. In both
cases the smallest binary value has priority. If two (or three) transmit-enabled buffers have
the same smallest value, the lowest-numbered buffer sends first.
The CAN controller selects among multiple enabled Tx Buffers dynamically, just before it
sends each message.
1. Write a 1 to the relevant bit(s) in the CANSLEEPCLR register.
2. Write a 0 to the SM bit in the CAN1MOD and/or CAN2MOD register.
3. Write a 1 to the relevant bit(s) in the CANWAKEFLAGS register. Failure to perform
this step will prevent subsequent entry into Power-down mode.
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 19 August 2010
Section 4.8 “Power
Chapter 16: LPC17xx CAN1/2
UM10360
control”.
© NXP B.V. 2010. All rights reserved.
371 of 840

Related parts for LPC1767FBD100,551