LPC1767FBD100,551 NXP Semiconductors, LPC1767FBD100,551 Datasheet - Page 340

IC ARM CORTEX MCU 512K 100-LQFP

LPC1767FBD100,551

Manufacturer Part Number
LPC1767FBD100,551
Description
IC ARM CORTEX MCU 512K 100-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1767FBD100,551

Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
100MHz
Connectivity
Ethernet, I²C, IrDA, Microwire, SPI, SSI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
70
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 8x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Processor Series
LPC17
Core
ARM Cortex M3
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2, MCB1760, MCB1760U, MCB1760UME
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
568-4967
935289808551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1767FBD100,551
Quantity:
9 999
Part Number:
LPC1767FBD100,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
UM10360
User manual
If the receiver is DISABLED (RS485CTRL bit 1 = ‘1’) any received data bytes will be
ignored and will not be stored in the RXFIFO. When an address byte is detected (parity bit
= ‘1’) it will be placed into the RXFIFO and an Rx Data Ready Interrupt will be generated.
The processor can then read the address byte and decide whether or not to enable the
receiver to accept the following data.
While the receiver is ENABLED (RS485CTRL bit 1 =’0’) all received bytes will be
accepted and stored in the RXFIFO regardless of whether they are data or address. When
an address character is received a parity error interrupt will be generated and the
processor can decide whether or not to disable the receiver.
RS-485/EIA-485 Auto Address Detection (AAD) mode
When both RS485CTRL register bits 0 (9-bit mode enable) and 2 (AAD mode enable) are
set, the UART is in auto address detect mode.
In this mode, the receiver will compare any address byte received (parity = ‘1’) to the 8-bit
value programmed into the RS485ADRMATCH register.
If the receiver is DISABLED (RS485CTRL bit 1 = ‘1’) any received byte will be discarded if
it is either a data byte OR an address byte which fails to match the RS485ADRMATCH
value.
When a matching address character is detected it will be pushed onto the RXFIFO along
with the parity bit, and the receiver will be automatically enabled (RS485CTRL bit 1 will be
cleared by hardware). The receiver will also generate n Rx Data Ready Interrupt.
While the receiver is ENABLED (RS485CTRL bit 1 = ‘0’) all bytes received will be
accepted and stored in the RXFIFO until an address byte which does not match the
RS485ADRMATCH value is received. When this occurs, the receiver will be automatically
disabled in hardware (RS485CTRL bit 1 will be set), The received non-matching address
character will not be stored in the RXFIFO.
RS-485/EIA-485 Auto Direction Control
RS485/EIA-485 Mode includes the option of allowing the transmitter to automatically
control the state of either the RTS pin or the DTR pin as a direction control output signal.
Setting RS485CTRL bit 4 = ‘1’ enables this feature.
Direction control, if enabled, will use the RTS pin when RS485CTRL bit 3 = ‘0’. It will use
the DTR pin when RS485CTRL bit 3 = ‘1’.
When Auto Direction Control is enabled, the selected pin will be asserted (driven low)
when the CPU writes data into the TXFIFO. The pin will be de-asserted (driven high) once
the last bit of data has been transmitted. See bits 4 and 5 in the RS485CTRL register.
The RS485CTRL bit 4 takes precedence over all other mechanisms controlling RTS (or
DTR) with the exception of loopback mode.
RS485/EIA-485 driver delay time
The driver delay time is the delay between the last stop bit leaving the TXFIFO and the
de-assertion of RTS (or DTR). This delay time can be programmed in the 8-bit RS485DLY
register. The delay time is in periods of the baud clock. Any delay time from 0 to 255 bit
times may be programmed.
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 19 August 2010
Chapter 15: LPC17xx UART1
UM10360
© NXP B.V. 2010. All rights reserved.
340 of 840

Related parts for LPC1767FBD100,551