LPC1767FBD100,551 NXP Semiconductors, LPC1767FBD100,551 Datasheet - Page 296

IC ARM CORTEX MCU 512K 100-LQFP

LPC1767FBD100,551

Manufacturer Part Number
LPC1767FBD100,551
Description
IC ARM CORTEX MCU 512K 100-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1767FBD100,551

Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
100MHz
Connectivity
Ethernet, I²C, IrDA, Microwire, SPI, SSI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
70
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 8x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Processor Series
LPC17
Core
ARM Cortex M3
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2, MCB1760, MCB1760U, MCB1760UME
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
568-4967
935289808551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1767FBD100,551
Quantity:
9 999
Part Number:
LPC1767FBD100,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
13.11 USB OTG controller initialization
UM10360
User manual
13.10.1.1 Host clock request signals
13.10.2 Power-down mode support
The dev_dma_need_clk signal is asserted on any Device controller DMA access to
memory. Once asserted, it remains active for 2 ms (2 frames), to help assure that DMA
throughput is not affected by any latency associated with re-enabling ahb_master_clk.
2 ms after the last DMA access, dev_dma_need_clk is de-asserted to help conserve
power. This signal allows AHB_CLK_EN to be cleared during normal operation.
The Host controller has two clock request signals, host_need_clk and
host_dma_need_clk. When asserted, these signals turn on the host’s 48 MHz clock and
ahb_master_clk respectively.
The host_need_clk signal is asserted while the Host controller functional state is not
UsbSuspend, or if the functional state is UsbSuspend and resume signaling or a
disconnect is detected on the USB bus. This signal allows HOST_CLK_EN to be cleared
during normal operation when software does not need to access the Host controller
registers – the Host will continue to function normally and automatically shut off its clock
when it goes into the UsbSuspend state.
The host_dma_need_clk signal is asserted on any Host controller DMA access to
memory. Once asserted, it remains active for 2 ms (2 frames), to help assure that DMA
throughput is not affected by any latency associated with re-enabling ahb_master_clk.
2 ms after the last DMA access, host_dma_need_clk is de-asserted to help conserve
power. This signal allows AHB_CLK_EN to be cleared during normal operation.
The LPC17xx can be configured to wake up from Power-down mode on any USB bus
activity. When the chip is in Power-down mode and the USB interrupt is enabled, the
assertion of USB_NEED_CLK causes the chip to wake up from Power-down mode.
Before Power-down mode can be entered when the USB activity interrupt is enabled,
USB_NEED_CLK must be de-asserted. This is accomplished by clearing all of the
CLK_EN bits in OTGClkCtrl and putting the Host controller into the UsbSuspend
functional state. If it is necessary to wait for either of the dma_need_clk signals or the
dev_need_clk to be de-asserted, the status of USB_NEED_CLK can be polled in the
USBIntSt register to determine when they have all been de-asserted.
The LPC17xx OTG device controller initialization includes the following steps:
1. Enable the device controller by setting the PCUSB bit of PCONP.
2. Configure and enable the USB PLL (PLL1) or Main PLL (PLL0) to provide 48 MHz for
3. Enable the desired controller clocks by setting their respective CLK_EN bits in the
usbclk and the desired frequency for cclk. For correct operation of synchronization
logic in the device controller, the minimum cclk frequency is 18 MHz. For the
procedure for determining the PLL setting and configuration, see
“Procedure for determining PLL0 settings”
determining PLL1
USBClkCtrl register. Poll the corresponding CLK_ON bits in the USBClkSt register
until they are set.
All information provided in this document is subject to legal disclaimers.
settings”.
Rev. 2 — 19 August 2010
or
Section 4.6.9 “Procedure for
Chapter 13: LPC17xx USB OTG
Section 4.5.11
UM10360
© NXP B.V. 2010. All rights reserved.
296 of 840

Related parts for LPC1767FBD100,551