LPC1767FBD100,551 NXP Semiconductors, LPC1767FBD100,551 Datasheet - Page 208

IC ARM CORTEX MCU 512K 100-LQFP

LPC1767FBD100,551

Manufacturer Part Number
LPC1767FBD100,551
Description
IC ARM CORTEX MCU 512K 100-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1767FBD100,551

Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
100MHz
Connectivity
Ethernet, I²C, IrDA, Microwire, SPI, SSI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
70
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 8x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Processor Series
LPC17
Core
ARM Cortex M3
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2, MCB1760, MCB1760U, MCB1760UME
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
568-4967
935289808551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1767FBD100,551
Quantity:
9 999
Part Number:
LPC1767FBD100,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
10.18 AHB bandwidth
UM10360
User manual
10.18.1 DMA access
The Ethernet block is connected to an AHB bus which must carry all of the data and
control information associated with all Ethernet traffic in addition to the CPU accesses
required to operate the Ethernet block and deal with message contents.
Assumptions
By making some assumptions, the bandwidth needed for each type of AHB transfer can
be calculated and added in order to find the overall bandwidth requirement.
The flexibility of the descriptors used in the Ethernet block allows the possibility of defining
memory buffers in a range of sizes. In order to analyze bus bandwidth requirements,
some assumptions must be made about these buffers. The "worst case" is not addressed
since that would involve all descriptors pointing to single byte buffers, with most of the
memory occupied in holding descriptors and very little data. It can easily be shown that
the AHB cannot handle the huge amount of bus traffic that would be caused by such a
degenerate (and illogical) case.
For this analysis, an Ethernet packet is assumed to consist of a 64 byte frame.
Continuous traffic is assumed on both the transmit and receive channels.
This analysis does not reflect the flow of Ethernet traffic over time, which would include
inter-packet gaps in both the transmit and receive channels that reduce the bandwidth
requirements over a larger time frame.
Types of DMA access and their bandwidth requirements
The interface to an external Ethernet PHY is via RMII. RMII operates at 50 MHz,
transferring a byte in 4 clock cycles. The data transfer rate is 12.5 Mbps.
The Ethernet block initiates DMA accesses for the following cases:
Tx descriptor read:
– Transmit descriptors occupy 2 words (8 bytes) of memory and are read once for
– Two word read happens once every 64 bytes (16 words) of transmitted data.
– This gives 1/8th of the data rate, which = 1.5625 Mbps.
Rx descriptor read:
– Receive descriptors occupy 2 words (8 bytes) of memory and are read once for
– Two word read happens once every 64 bytes (16 words) of received data.
– This gives 1/8th of the data rate, which = 1.5625 Mbps.
Tx status write:
– Transmit status occupies 1 word (4 bytes) of memory and is written once for each
– One word write happens once every 64 bytes (16 words) of transmitted data.
– This gives 1/16th of the data rate, which = 0.7813 Mbps.
each use of a descriptor.
each use of a descriptor.
use of a descriptor.
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 19 August 2010
Chapter 10: LPC17xx Ethernet
UM10360
© NXP B.V. 2010. All rights reserved.
208 of 840

Related parts for LPC1767FBD100,551