ATSAM3S1BA-AU Atmel, ATSAM3S1BA-AU Datasheet - Page 593

IC MCU 32BIT 64KB FLASH 64LQFP

ATSAM3S1BA-AU

Manufacturer Part Number
ATSAM3S1BA-AU
Description
IC MCU 32BIT 64KB FLASH 64LQFP
Manufacturer
Atmel
Series
SAM3Sr
Datasheets

Specifications of ATSAM3S1BA-AU

Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
64MHz
Connectivity
I²C, MMC, SPI, SSC, UART/USART, USB
Peripherals
Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT
Number Of I /o
47
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
1.62 V ~ 1.95 V
Data Converters
A/D 10x10/12b, D/A 2x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-LQFP
Controller Family/series
ATSAM3S
No. Of I/o's
47
Ram Memory Size
16KB
Cpu Speed
64MHz
No. Of Timers
6
Rohs Compliant
Yes
Processor Series
ATSAM3x
Core
ARM Cortex M3
3rd Party Development Tools
JTRACE-CM3, MDK-ARM, RL-ARM, ULINK2
Development Tools By Supplier
ATSAM3S-EK
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATSAM3S1BA-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATSAM3S1BA-AUR
Manufacturer:
Atmel
Quantity:
10 000
Figure 30-10. Chip Select Decoding Application Block Diagram: Single Master/Multiple Slave Implementation
30.7.3.8
6500C–ATARM–8-Feb-11
6500C–ATARM–8-Feb-11
SPI Master
Peripheral Deselection without PDC
NPCS0
NPCS1
NPCS2
NPCS3
SPCK
MISO
MOSI
The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14.
an implementation.
If the CSAAT bit is used, with or without the PDC, the Mode Fault detection for NPCS0 line must
be disabled. This is not needed for all other chip select lines since Mode Fault Detection is only
on NPCS0.
During a transfer of more than one data on a Chip Select without the PDC, the SPI_TDR is
loaded by the processor, the flag TDRE rises as soon as the content of the SPI_TDR is trans-
ferred into the internal shift register. When this flag is detected high, the SPI_TDR can be
reloaded. If this reload by the processor occurs before the end of the current transfer and if the
next transfer is performed on the same chip select as the current transfer, the Chip Select is not
de-asserted between the two transfers. But depending on the application software handling the
SPI status register flags (by interrupt or polling method) or servicing other interrupts or other
tasks, the processor may not reload the SPI_TDR in time to keep the chip select active (low). A
null Delay Between Consecutive Transfer (DLYBCT) value in the SPI_CSR register, will give
even less time for the processor to reload the SPI_TDR. With some SPI slave peripherals,
requiring the chip select line to remain active (low) during a full set of transfers might lead to
communication errors.
To facilitate interfacing with such devices, the Chip Select Register [CSR0...CSR3] can be pro-
grammed with the CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select
lines to remain in their current state (low = active) until transfer to another chip select is required.
1-of-n Decoder/Demultiplexer
SPCK
Slave 0
MISO MOSI
NSS
SPCK MISO MOSI
Slave 1
NSS
SAM3S Preliminary
SAM3S Preliminary
Figure 30-10
SPCK MISO MOSI
below shows such
Slave 14
NSS
593
593

Related parts for ATSAM3S1BA-AU