ATSAM3S1BA-AU Atmel, ATSAM3S1BA-AU Datasheet - Page 218

IC MCU 32BIT 64KB FLASH 64LQFP

ATSAM3S1BA-AU

Manufacturer Part Number
ATSAM3S1BA-AU
Description
IC MCU 32BIT 64KB FLASH 64LQFP
Manufacturer
Atmel
Series
SAM3Sr
Datasheets

Specifications of ATSAM3S1BA-AU

Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
64MHz
Connectivity
I²C, MMC, SPI, SSC, UART/USART, USB
Peripherals
Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT
Number Of I /o
47
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
1.62 V ~ 1.95 V
Data Converters
A/D 10x10/12b, D/A 2x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-LQFP
Controller Family/series
ATSAM3S
No. Of I/o's
47
Ram Memory Size
16KB
Cpu Speed
64MHz
No. Of Timers
6
Rohs Compliant
Yes
Processor Series
ATSAM3x
Core
ARM Cortex M3
3rd Party Development Tools
JTRACE-CM3, MDK-ARM, RL-ARM, ULINK2
Development Tools By Supplier
ATSAM3S-EK
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATSAM3S1BA-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATSAM3S1BA-AUR
Manufacturer:
Atmel
Quantity:
10 000
11.5
11.5.1
11.5.2
Figure 11-4. Debug Architecture
11.5.3
218
Functional Description
data address sampler
SAM3S Preliminary
Test Pin
Debug Architecture
Serial Wire/JTAG Debug Port (SWJ-DP)
4 watchpoints
interrupt trace
data sampler
CPU statistics
PC sampler
DWT
One dedicated pin, TST, is used to define the device operating mode. When this pin is at low
level during power-up, the device is in normal operating mode. When at high level, the device is
in test mode or FFPI mode. The TST pin integrates a permanent pull-down resistor of about 15
kΩ, so that it can be left unconnected for normal operation. Note that when setting the TST pin to
low or high level at power up, it must remain in the same state during the duration of the whole
operation.
Figure 11-4
tional units for debug:
The debug architecture information that follows is mainly dedicated to developers of SWJ-DP
Emulators/Probes and debugging tool vendors for Cortex M3-based microcontrollers. For further
details on SWJ-DP see the Cortex M3 technical reference manual.
The Cortex-M3 embeds a SWJ-DP Debug port which is the standard CoreSight
combines Serial Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port (JTAG-DP),
5 pins.
By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables JTAG-DP and enables SW-DP.
• SWJ-DP (Serial Wire/JTAG Debug Port)
• FPB (Flash Patch Breakpoint)
• DWT (Data Watchpoint and Trace)
• ITM (Instrumentation Trace Macrocell)
• TPIU (Trace Port Interface Unit)
shows the Debug Architecture used in the SAM3. The Cortex-M3 embeds four func-
software trace
time stamping
6 breakpoints
32 channels
FPB
ITM
TPIU
SWD/JTAG
SWO trace
SWJ-DP
6500C–ATARM–8-Feb-11
debug port. It

Related parts for ATSAM3S1BA-AU