EP2AGX45DF29I5N Altera, EP2AGX45DF29I5N Datasheet - Page 66

no-image

EP2AGX45DF29I5N

Manufacturer Part Number
EP2AGX45DF29I5N
Description
IC ARRIA II GX FPGA 45K 780FBGA
Manufacturer
Altera
Series
Arria II GXr

Specifications of EP2AGX45DF29I5N

Number Of Logic Elements/cells
42959
Number Of Labs/clbs
1805
Total Ram Bits
3435
Number Of I /o
364
Voltage - Supply
0.87 V ~ 0.93 V
Mounting Type
Surface Mount
Operating Temperature
-40°C ~ 100°C
Package / Case
780-FBGA
Family Name
Arria® II GX
Number Of Logic Blocks/elements
45125
# I/os (max)
364
Frequency (max)
500MHz
Operating Supply Voltage (typ)
900mV
Logic Cells
45125
Ram Bits
3565158.4
Operating Supply Voltage (min)
0.87V
Operating Supply Voltage (max)
0.93V
Operating Temp Range
-40C to 100C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
780
Package Type
FC-FBGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP2AGX45DF29I5N
Manufacturer:
ALTERA
Quantity:
201
Part Number:
EP2AGX45DF29I5N
Manufacturer:
ALTERA
Quantity:
853
Part Number:
EP2AGX45DF29I5N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP2AGX45DF29I5N
Manufacturer:
ALTERA
0
Part Number:
EP2AGX45DF29I5N
0
3–20
Design Considerations
Arria II Device Handbook Volume 1: Device Interfaces and Integration
Single Clock Mode
Selecting Memory Block
Conflict Resolution
f
When using read and write clock mode, the output read data is unknown if you
perform a simultaneous read and write to the same address location. If you require
the output data to be a known value, use either single clock mode or input and output
clock mode, and choose the appropriate read-during-write behavior in the
MegaWizard Plug-In Manager.
Arria II memory blocks can implement single clock mode for true dual-port, simple
dual-port, and single-port memories. In this mode, a single clock, together with a
clock enable, is used to control all registers of the memory block. Asynchronous clears
are available on output latches and output registers only.
This section describes guidelines for designing with memory blocks.
The Quartus II software automatically partitions user-defined memory into
embedded memory blocks by taking into account both speed and size constraints
placed on your design. For example, the Quartus II software may spread out memory
across multiple memory blocks when resources are available to increase the
performance of your design. You can manually assign memory to a specific block size
using the RAM MegaWizard Plug-In Manager.
MLABs can implement single-port SRAM through emulation with the Quartus II
software. Emulation results in minimal additional logic resources used. Because of the
dual-purpose architecture of the MLAB, it only has data input registers and output
registers in the block. MLABs gain input address registers and additional optional
data output registers from adjacent ALMs with register packing.
For more information about register packing, refer to the
Adaptive Logic Modules in Arria II Devices
When using the memory blocks in true dual-port mode, it is possible to attempt two
write operations to the same memory location (address). Because there is no conflict
resolution circuitry built into the memory blocks, this results in unknown data being
written to that location. Therefore, you must implement conflict resolution logic,
external to the memory block, to avoid address conflicts.
chapter.
Chapter 3: Memory Blocks in Arria II Devices
Logic Array Blocks and
December 2010 Altera Corporation
Design Considerations

Related parts for EP2AGX45DF29I5N