EP4SE530H40I3 Altera, EP4SE530H40I3 Datasheet - Page 40

no-image

EP4SE530H40I3

Manufacturer Part Number
EP4SE530H40I3
Description
IC STRATIX IV FPGA 530K 1517HBGA
Manufacturer
Altera
Series
STRATIX® IV Er

Specifications of EP4SE530H40I3

Number Of Logic Elements/cells
531200
Number Of Labs/clbs
21248
Total Ram Bits
27376
Number Of I /o
976
Voltage - Supply
0.87 V ~ 0.93 V
Mounting Type
Surface Mount
Operating Temperature
-40°C ~ 100°C
Package / Case
1517-HBGA
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Number Of Gates
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP4SE530H40I3
Manufacturer:
ALTERA
Quantity:
325
Part Number:
EP4SE530H40I3
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP4SE530H40I3
Manufacturer:
ALTERA
0
Part Number:
EP4SE530H40I3N
Manufacturer:
SHARP
Quantity:
1 200
Part Number:
EP4SE530H40I3N
Manufacturer:
ALTERA
Quantity:
490
Part Number:
EP4SE530H40I3N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP4SE530H40I3N
Manufacturer:
ALTERA
0
Part Number:
EP4SE530H40I3N
Manufacturer:
ALTERA/阿尔特拉
Quantity:
20 000
Part Number:
EP4SE530H40I3N
0
2–4
Figure 2–3. Direct-Link Connection
Stratix IV Device Handbook Volume 1
Direct-link
interconnect
to left
LAB Interconnects
LAB Control Signals
Direct-link interconnect from the
block, DSP block, or IOE output
ALMs
left LAB, TriMatrix memory
The LAB local interconnect can drive ALMs in the same LAB. It is driven by column
and row interconnects and ALM outputs in the same LAB. Neighboring
LABs/MLABs, M9K RAM blocks, M144K blocks, or digital signal processing (DSP)
blocks from the left or right can also drive the LAB’s local interconnect through the
direct link connection. The direct link connection feature minimizes the use of row
and column interconnects, providing higher performance and flexibility. Each LAB
can drive 30 ALMs through fast-local and direct-link interconnects.
Figure 2–3
Each LAB contains dedicated logic for driving control signals to its ALMs. Control
signals include three clocks, three clock enables, two asynchronous clears, a
synchronous clear, and synchronous load control signals. This gives a maximum of 10
control signals at a time. Although you generally use synchronous-load and clear
signals when implementing counters, you can also use them with other functions.
Each LAB has two unique clock sources and three clock enable signals, as shown in
Figure
sources and three clock enable signals. Each LAB’s clock and clock enable signals are
linked. For example, any ALM in a particular LAB using the labclk1 signal also uses
the labclkena1 signal. If the LAB uses both the rising and falling edges of a clock, it
also uses two LAB-wide clock signals. De-asserting the clock enable signal turns off
the corresponding LAB-wide clock.
2–4. The LAB control block can generate up to three clocks using two clock
MLAB
shows the direct-link connection.
Interconnect
Local
Chapter 2: Logic Array Blocks and Adaptive Logic Modules in Stratix IV Devices
LAB
ALMs
Direct-link
interconnect
to right
Direct-link interconnect from the
right LAB, TriMatrix memory
block, DSP block, or IOE output
February 2011 Altera Corporation
Logic Array Blocks

Related parts for EP4SE530H40I3