MC68331CEH25 Freescale Semiconductor, MC68331CEH25 Datasheet - Page 125

IC MCU 32BIT 25MHZ 132-PQFP

MC68331CEH25

Manufacturer Part Number
MC68331CEH25
Description
IC MCU 32BIT 25MHZ 132-PQFP
Manufacturer
Freescale Semiconductor
Series
M683xxr
Datasheets

Specifications of MC68331CEH25

Core Processor
CPU32
Core Size
32-Bit
Speed
25MHz
Connectivity
EBI/EMI, SCI, SPI, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
18
Program Memory Type
ROMless
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
132-QFP
Controller Family/series
68K
No. Of I/o's
18
Cpu Speed
25MHz
No. Of Timers
1
Embedded Interface Type
QSPI, SCI, UART
No. Of Pwm Channels
2
Digital Ic Case Style
PQFP
Rohs Compliant
Yes
Processor Series
M683xx
Core
CPU32
Data Bus Width
32 bit
Data Ram Size
80 B
Interface Type
QSPI, SCI, UART
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
18
Number Of Timers
1
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Eeprom Size
-
Ram Size
-
Program Memory Size
-
Data Converters
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68331CEH25
Manufacturer:
PANASONIC
Quantity:
2 000
Part Number:
MC68331CEH25
Manufacturer:
Freescale Semiconductor
Quantity:
135
Part Number:
MC68331CEH25
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
5.10.4 On-Chip Breakpoint Hardware
5.11 Loop Mode Instruction Execution
MC68331
USER’S MANUAL
(IFETCH) output identifies the bus cycles in which the operand is loaded into the in-
struction pipeline. Pipeline flushes are also signaled with IFETCH. Monitoring these
two signals allows a bus analyzer to synchronize itself to the instruction stream and
monitor its activity.
An external breakpoint input and on-chip breakpoint hardware allow a breakpoint trap
on any memory access. Off-chip address comparators preclude breakpoints unless
show cycles are enabled. Breakpoints on instruction prefetches that are ultimately
flushed from the instruction pipeline are not acknowledged; operand breakpoints are
always acknowledged. Acknowledged breakpoints initiate exception processing at the
address in exception vector number 12, or alternately enter background mode.
The CPU32 has several features that provide efficient execution of program loops.
One of these features is the DBcc looping primitive instruction. To increase the perfor-
mance of the CPU32, a loop mode has been added to the processor. The loop mode
is used by any single word instruction that does not change the program flow. Loop
mode is implemented in conjunction with the DBcc instruction. Figure 5-12 shows the
required form of an instruction loop for the processor to enter loop mode.
The loop mode is entered when the DBcc instruction is executed, and the loop dis-
placement is –4. Once in loop mode, the processor performs only the data cycles as-
sociated with the instruction and suppresses all instruction fetches. The termination
condition and count are checked after each execution of the data operations of the
looped instruction. The CPU32 automatically exits the loop mode on interrupts or other
exceptions. All single word instructions that do not cause a change of flow can be
looped.
Figure 5-12 Loop Mode Instruction Sequence
Freescale Semiconductor, Inc.
For More Information On This Product,
ONE WORD INSTRUCTION
CENTRAL PROCESSING UNIT
DBCC DISPLACEMENT
Go to: www.freescale.com
$FFFC = – 4
DBCC
1126A
5-25
5

Related parts for MC68331CEH25