MCF5253VM140J Freescale Semiconductor, MCF5253VM140J Datasheet - Page 579

no-image

MCF5253VM140J

Manufacturer Part Number
MCF5253VM140J
Description
IC MCU 2.1MIPS 140MHZ 225MAPBGA
Manufacturer
Freescale Semiconductor
Series
MCF525xr

Specifications of MCF5253VM140J

Core Processor
Coldfire V2
Core Size
32-Bit
Speed
140MHz
Connectivity
CAN, EBI/EMI, I²C, QSPI, UART/USART, USB OTG
Peripherals
DMA, WDT
Program Memory Type
ROMless
Ram Size
128K x 8
Voltage - Supply (vcc/vdd)
1.08 V ~ 1.32 V
Data Converters
A/D 6x12b
Oscillator Type
External
Operating Temperature
-20°C ~ 70°C
Package / Case
225-MAPBGA
Processor Series
MCF525x
Core
ColdFire V2
3rd Party Development Tools
JLINK-CF-BDM26, EWCF
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of I /o
-
Eeprom Size
-
Program Memory Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MCF5253VM140J
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
24.9.14 Interrupts
The EHCI host controller hardware provides interrupt capability based on a number of sources. There are
several general groups of interrupt sources:
All transaction-based sources are maskable through the host controller's Interrupt Enable register
(USBINTR). Additionally, individual transfer descriptors can be marked to generate an interrupt on
completion. This section describes each interrupt source and the processing that occurs in response to the
interrupt.
During normal operation, interrupts may be immediate or deferred until the next interrupt threshold occurs.
The interrupt threshold is a tunable parameter via the Interrupt Threshold Control field in the USBCMD
register. The value of this register controls when the host controller generates an interrupt on behalf of
normal transaction execution. When a transaction completes during an interrupt interval period, the
interrupt signaling the completion of the transfer will not occur until the interrupt threshold occurs. For
example, the default value is eight micro-frames. This means that the host controller will not generate
interrupts any more frequently than once every eight micro-frames.
Section 24.9.14.2.4, “Host System Error”
If an interrupt has been scheduled to be generated for the current interrupt threshold interval, the interrupt
is not signaled until after the status for the last complete transaction in the interval has been written back
to system memory. This may sometimes result in the interrupt not being signaled until the next interrupt
threshold.
Initial interrupt processing is the same, regardless of the reason for the interrupt. When an interrupt is
signaled by the hardware, CPU control is transferred to host controller's USB interrupt handler. The precise
mechanism to accomplish the transfer is OS specific. For this discussion it is just assumed that control is
received. When the interrupt handler receives control, its first action is to reads the USBSTS. It then
acknowledges the interrupt by clearing all of the interrupt status bits by writing ones to these bit positions.
The handler then determines whether the interrupt is due to schedule processing or some other event. After
acknowledging the interrupt, the handler (via an OS-specific mechanism), schedules a deferred procedure
call (DPC) which will execute later. The DPC routine processes the results of the schedule execution. The
precise mechanisms used are beyond the scope of this document.
Freescale Semiconductor
allow port testing with the Run/Stop bit set. However, all host controllers must support port testing
with Run/Stop cleared and HCHalted set.
Set the Port Test Control field in the port under test PORTSC register to the value corresponding
to the desired test mode. If the selected test is Test_Force_Enable, then the Run/Stop bit in the
USBCMD register must then be transitioned back to one, in order to enable transmission of SOFs
out of the port under test.
When the test is complete, the system software must ensure the host controller is halted (HCHalted
bit is a one) then it terminates and exits test mode by setting HCReset.
Interrupts as a result of executing transactions from the schedule (success and error conditions),
Host controller events (Port change events, etc.), and
Host controller error events
MCF5253 Reference Manual, Rev. 1
details effects of a host system error.
Universal Serial Bus Interface
24-117

Related parts for MCF5253VM140J