EP4CGX150CF23I7N Altera, EP4CGX150CF23I7N Datasheet - Page 99

no-image

EP4CGX150CF23I7N

Manufacturer Part Number
EP4CGX150CF23I7N
Description
IC CYCLONE IV FPGA 150K 484FBGA
Manufacturer
Altera
Series
CYCLONE® IV GXr

Specifications of EP4CGX150CF23I7N

Number Of Logic Elements/cells
149760
Number Of Labs/clbs
9360
Total Ram Bits
6480000
Number Of I /o
270
Voltage - Supply
1.16 V ~ 1.24 V
Mounting Type
Surface Mount
Operating Temperature
-40°C ~ 100°C
Package / Case
484-FBGA
Family Name
Cyclone IV
Number Of Logic Blocks/elements
149760
# I/os (max)
270
Operating Supply Voltage (typ)
1.2V
Logic Cells
149760
Ram Bits
6635520
Operating Supply Voltage (min)
1.16V
Operating Supply Voltage (max)
1.24V
Operating Temp Range
-40C to 100C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
484
Package Type
FBGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP4CGX150CF23I7N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP4CGX150CF23I7N
Manufacturer:
ALTERA
0
Part Number:
EP4CGX150CF23I7N
Manufacturer:
ALTERA/阿尔特拉
Quantity:
20 000
Part Number:
EP4CGX150CF23I7N
0
Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
PLL Reconfiguration
Figure 5–23. PLL Reconfiguration Scan Chain
© December 2010 Altera Corporation
configupdate
scandataout
scanclkena
scandone
scandata
scanclk
areset
1
D0_old
Figure 5–23
When reconfiguring the counter clock frequency, the corresponding counter phase
shift settings cannot be reconfigured using the same interface. You can reconfigure
phase shifts in real time using the dynamic phase shift reconfiguration interface. If
you reconfigure the counter frequency, but wish to keep the same non-zero phase shift
setting (for example, 90°) on the clock output, you must reconfigure the phase shift
after reconfiguring the counter clock frequency.
Post-Scale Counters (C0 to C4)
You can configure multiply or divide values and duty cycle of post-scale counters in
real time. Each counter has an 8-bit high time setting and an 8-bit low time setting.
The duty cycle is the ratio of output high or low time to the total cycle time, that is the
sum of the two. Additionally, these counters have two control bits, rbypass, for
bypassing the counter, and rselodd, to select the output clock duty cycle.
When the rbypass bit is set to 1, it bypasses the counter, resulting in a divide by one.
When this bit is set to 0, the PLL computes the effective division of the VCO output
frequency based on the high and low time counters. For example, if the post-scale
divide factor is 10, the high and low count values are set to 5 and 5, to achieve a
50–50% duty cycle. The PLL implements this duty cycle by transitioning the output
clock from high-to-low on the rising edge of the VCO output clock. However, a 4 and
6 setting for the high and low count values, respectively, would produce an output
clock with a 40–60% duty cycle.
D0 (LSB)
shows a functional simulation of the PLL reconfiguration feature.
Dn (MSB)
Dn_old
Cyclone IV Device Handbook, Volume 1
Dn
5–37

Related parts for EP4CGX150CF23I7N