MC68376BGMAB20 Freescale Semiconductor, MC68376BGMAB20 Datasheet - Page 166

no-image

MC68376BGMAB20

Manufacturer Part Number
MC68376BGMAB20
Description
IC MCU 32BIT 8K ROM 160-QFP
Manufacturer
Freescale Semiconductor
Series
M683xxr
Datasheets

Specifications of MC68376BGMAB20

Core Processor
CPU32
Core Size
32-Bit
Speed
20MHz
Connectivity
CAN, EBI/EMI, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
18
Program Memory Type
ROMless
Ram Size
7.5K x 8
Voltage - Supply (vcc/vdd)
4.75 V ~ 5.25 V
Data Converters
A/D 16x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 125°C
Package / Case
160-QFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68376BGMAB20
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
9.3.5.1 Master Mode
9-16
MOTOROLA
Normally, the SPI bus performs synchronous bidirectional transfers. The serial clock
on the SPI bus master supplies the clock signal SCK to time the transfer of data. Four
possible combinations of clock phase and polarity can be specified by the CPHA and
CPOL bits in SPCR0.
Data is transferred with the most significant bit first. The number of bits transferred per
command defaults to eight, but can be set to any value from eight to sixteen bits by
writing a value into the BITSE field in command RAM.
Typically, SPI bus outputs are not open-drain unless multiple SPI masters are in the
system. If needed, the WOMQ bit in SPCR0 can be set to provide wired-OR, open-
drain outputs. An external pull-up resistor should be used on each output line. WOMQ
affects all QSPI pins regardless of whether they are assigned to the QSPI or used as
general-purpose I/O.
Setting the MSTR bit in SPCR0 selects master mode operation. In master mode, the
QSPI can initiate serial transfers, but cannot respond to externally initiated transfers.
When the slave select input of a device configured for master mode is asserted, a
mode fault occurs.
Before QSPI operation begins, QSM register PQSPAR must be written to assign the
necessary pins to the QSPI. The pins necessary for master mode operation are MISO
and MOSI, SCK, and one or more of the chip-select pins. MISO is used for serial data
input in master mode, and MOSI is used for serial data output. Either or both may be
necessary, depending on the particular application. SCK is the serial clock output in
master mode.
The PORTQS data register must next be written with values that make the PQS2/SCK
and PQS[6:3]/PCS[3:0] outputs inactive when the QSPI completes a series of trans-
fers. Pins allocated to the QSPI by PQSPAR are controlled by PORTQS when the
QSPI is inactive. PORTQS I/O pins driven to states opposite those of the inactive
QSPI signals can generate glitches that momentarily enable or partially clock a slave
device. Thus, if a slave device operates with an inactive SCK state of logic one (CPOL
= 1) and uses active low peripheral chip-select PCS0, the PQS[3:2] bits in PORTQS
must be set to %11. If PQS[3:2] = %00, falling edges will appear on PQS2/SCK and
PQS3/PCS0 as the QSPI relinquishes control of these pins and PORTQS drives them
to logic zero from the inactive SCK and PCS0 states of logic one.
Before master mode operation is initiated, QSM register DDRQS is written last to
direct the data flow on the QSPI pins used. Configure the SCK, MOSI and appropriate
chip-select pins PCS[3:0] as outputs. The MISO pin must be configured as an input.
After pins are assigned and configured, write appropriate data to the command queue.
If data is to be transmitted, write the data to transmit RAM. Initialize the queue pointers
as appropriate.
Data transfer is synchronized with the internally-generated serial clock SCK. Control
bits, CPHA and CPOL, in SPCR0, control clock phase and polarity. Combinations of
CPHA and CPOL determine upon which SCK edge to drive outgoing data from the
MOSI pin and to latch incoming data from the MISO pin.
QUEUED SERIAL MODULE
USER’S MANUAL
MC68336/376

Related parts for MC68376BGMAB20