ATMEGA128-16AU Atmel, ATMEGA128-16AU Datasheet - Page 99

IC AVR MCU 128K 16MHZ 5V 64TQFP

ATMEGA128-16AU

Manufacturer Part Number
ATMEGA128-16AU
Description
IC AVR MCU 128K 16MHZ 5V 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
2-Wire, JTAG, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
4
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Controller Family/series
AVR MEGA
No. Of I/o's
53
Eeprom Memory Size
4096Byte
Ram Memory Size
4KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AU
Manufacturer:
MITSUBISHI
Quantity:
104
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
3 340
Part Number:
ATMEGA128-16AU
Quantity:
2 673
Part Number:
ATMEGA128-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
2 832
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
525
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA128-16AU
Quantity:
3 000
Part Number:
ATMEGA128-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Timer/Counter Timing
Diagrams
2467M–AVR–11/04
OCR0 and TCNT0 when the counter decrements. The PWM frequency for the output
when using phase correct PWM can be calculated by the following equation:
The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).
The extreme values for the OCR0 Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR0 is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.
At the very start of Period 2 in Figure 40 OCn has a transition from high to low even
though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match:
Figure 41 and Figure 42 contain timing data for the Timer/Counter operation. The
Timer/Counter is a synchronous design and the timer clock (clk
a clock enable signal. The figure shows the count sequence close to the MAX value.
Figure 43 and Figure 44 show the same timing data, but with the prescaler enabled. The
figures illustrate when interrupt flags are set.
The following figures show the Timer/Counter in Synchronous mode, and the timer clock
(clk
be replaced by the Timer/Counter Oscillator clock. The figures include information on
when interrupt flags are set. Figure 41 contains timing data for basic Timer/Counter
operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.
Figure 41. Timer/Counter Timing Diagram, No Prescaling
Figure 42 shows the same timing data, but with the prescaler enabled.
TCNTn
(clk
TOVn
clk
clk
T0
OCR0A changes its value from MAX, like in Figure 40. When the OCR0A value is
MAX the OCn pin value is the same as the result of a down-counting Compare
Match. To ensure symmetry around BOTTOM the OCn value at MAX must
correspond to the result of an up-counting Compare Match.
The timer starts counting from a higher value than the one in OCR0A, and for that
reason misses the Compare Match and hence the OCn change that would have
happened on the way up.
I/O
) is therefore shown as a clock enable signal. In asynchronous mode, clk
I/O
Tn
/1)
MAX - 1
f
OCnPCPWM
MAX
=
----------------- -
N 510
f
clk_I/O
BOTTOM
T0
ATmega128
) is therefore shown as
BOTTOM + 1
I/O
should
99

Related parts for ATMEGA128-16AU