ATMEGA128-16AU Atmel, ATMEGA128-16AU Datasheet - Page 305

IC AVR MCU 128K 16MHZ 5V 64TQFP

ATMEGA128-16AU

Manufacturer Part Number
ATMEGA128-16AU
Description
IC AVR MCU 128K 16MHZ 5V 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
2-Wire, JTAG, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
4
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Controller Family/series
AVR MEGA
No. Of I/o's
53
Eeprom Memory Size
4096Byte
Ram Memory Size
4KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AU
Manufacturer:
MITSUBISHI
Quantity:
104
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
3 340
Part Number:
ATMEGA128-16AU
Quantity:
2 673
Part Number:
ATMEGA128-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
2 832
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
525
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA128-16AU
Quantity:
3 000
Part Number:
ATMEGA128-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Data Polling Flash
Data Polling EEPROM
2467M–AVR–11/04
3. The SPI Serial Programming instructions will not work if the communication is
4. The Flash is programmed one page at a time. The page size is found in Table
5. The EEPROM array is programmed one byte at a time by supplying the address
6. Any memory location can be verified by using the Read instruction which returns
7. At the end of the programming session, RESET can be set high to commence
8. Power-off sequence (if needed):
When a page is being programmed into the Flash, reading an address location within
the page being programmed will give the value $FF. At the time the device is ready for a
new page, the programmed value will read correctly. This is used to determine when the
next page can be written. Note that the entire page is written simultaneously and any
address within the page can be used for polling. Data polling of the Flash will not work
for the value $FF, so when programming this value, the user will have to wait for at least
t
all locations, programming of addresses that are meant to contain $FF, can be skipped.
See Table 128 for t
When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value $FF. At the time the device is
ready for a new byte, the programmed value will read correctly. This is used to deter-
mine when the next byte can be written. This will not work for the value $FF, but the user
should have the following in mind: As a chip-erased device contains $FF in all locations,
programming of addresses that are meant to contain $FF, can be skipped. This does
not apply if the EEPROM is re-programmed without chip-erasing the device. In this
case, data polling cannot be used for the value $FF, and the user will have to wait at
least t
value.
WD_FLASH
out of synchronization. When in sync. the second byte ($53), will echo back
when issuing the third byte of the Programming Enable instruction. Whether the
echo is correct or not, all FOUR bytes of the instruction must be transmitted. If
the $53 did not echo back, give RESET a positive pulse and issue a new Pro-
gramming Enable command.
124 on page 293. The memory page is loaded one byte at a time by supplying
the 7 LSB of the address and data together with the Load Program Memory
Page instruction. To ensure correct loading of the page, the data low byte must
be loaded before data high byte is applied for given address. The Program Mem-
ory Page is stored by loading the Write Program Memory Page instruction with
the 9 MSB of the address. If polling is not used, the user must wait at least
t
Note: If other commands than polling (read) are applied before any write operation
(Flash, EEPROM, Lock bits, Fuses) is completed, may result in incorrect
programming.
and data together with the appropriate Write instruction. An EEPROM memory
location is first automatically erased before new data is written. If polling is not
used, the user must wait at least t
Table 128). In a chip erased device, no $FFs in the data file(s) need to be
programmed.
the content at the selected address at serial output MISO.
normal operation.
Set RESET to “1”.
Turn V
WD_FLASH
WD_EEPROM
before programming the next page. As a chip-erased device contains $FF in
CC
power off.
before issuing the next page. (See Table 128).
before programming the next byte. See Table 128 for t
WD_FLASH
value
WD_EEPROM
before issuing the next byte. (See
ATmega128
WD_EEPROM
305

Related parts for ATMEGA128-16AU