ATMEGA128-16AU Atmel, ATMEGA128-16AU Datasheet - Page 226

IC AVR MCU 128K 16MHZ 5V 64TQFP

ATMEGA128-16AU

Manufacturer Part Number
ATMEGA128-16AU
Description
IC AVR MCU 128K 16MHZ 5V 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
2-Wire, JTAG, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
4
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Controller Family/series
AVR MEGA
No. Of I/o's
53
Eeprom Memory Size
4096Byte
Ram Memory Size
4KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AU
Manufacturer:
MITSUBISHI
Quantity:
104
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
3 340
Part Number:
ATMEGA128-16AU
Quantity:
2 673
Part Number:
ATMEGA128-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
2 832
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
525
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA128-16AU
Quantity:
3 000
Part Number:
ATMEGA128-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Multi-master Systems
and Arbitration
226
ATmega128
If multiple masters are connected to the same bus, transmissions may be initiated simul-
taneously by one or more of them. The TWI standard ensures that such situations are
handled in such a way that one of the masters will be allowed to proceed with the trans-
fer, and that no data will be lost in the process. An example of an arbitration situation is
depicted below, where two masters are trying to transmit data to a slave receiver.
Figure 105. An Arbitration Example
Several different scenarios may arise during arbitration, as described below:
This is summarized in Figure 106. Possible status values are given in circles.
SDA
SCL
Two or more masters are performing identical communication with the same slave.
In this case, neither the slave nor any of the masters will know about the bus
contention.
Two or more masters are accessing the same slave with different data or direction
bit. In this case, arbitration will occur, either in the READ/WRITE bit or in the data
bits. The masters trying to output a one on SDA while another master outputs a zero
will lose the arbitration. Losing masters will switch to not addressed slave mode or
wait until the bus is free and transmit a new START condition, depending on
application software action.
Two or more masters are accessing different slaves. In this case, arbitration will
occur in the SLA bits. Masters trying to output a one on SDA while another master
outputs a zero will lose the arbitration. Masters losing arbitration in SLA will switch to
slave mode to check if they are being addressed by the winning master. If
addressed, they will switch to SR or ST mode, depending on the value of the
READ/WRITE bit. If they are not being addressed, they will switch to not addressed
slave mode or wait until the bus is free and transmit a new START condition,
depending on application software action.
TRANSMITTER
Device 1
MASTER
TRANSMITTER
Device 2
MASTER
Device 3
RECEIVER
SLAVE
........
Device n
V
CC
R1
2467M–AVR–11/04
R2

Related parts for ATMEGA128-16AU