ATMEGA128-16AU Atmel, ATMEGA128-16AU Datasheet - Page 122

IC AVR MCU 128K 16MHZ 5V 64TQFP

ATMEGA128-16AU

Manufacturer Part Number
ATMEGA128-16AU
Description
IC AVR MCU 128K 16MHZ 5V 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
2-Wire, JTAG, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
4
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Controller Family/series
AVR MEGA
No. Of I/o's
53
Eeprom Memory Size
4096Byte
Ram Memory Size
4KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AU
Manufacturer:
MITSUBISHI
Quantity:
104
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
3 340
Part Number:
ATMEGA128-16AU
Quantity:
2 673
Part Number:
ATMEGA128-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
2 832
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
525
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA128-16AU
Quantity:
3 000
Part Number:
ATMEGA128-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Fast PWM Mode
122
ATmega128
Figure 51. CTC Mode, Timing Diagram
An interrupt can be generated at each time the counter value reaches the TOP value by
either using the OCFnA or ICFn flag according to the register used to define the TOP
value. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing the TOP to a value close to BOTTOM when the
counter is running with none or a low prescaler value must be done with care since the
CTC mode does not have the double buffering feature. If the new value written to
OCRnA or ICRn is lower than the current value of TCNTn, the counter will miss the com-
pare match. The counter will then have to count to its maximum value (0xFFFF) and
wrap around starting at 0x0000 before the compare match can occur. In many cases
this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCRnA for defining TOP (WGMn3:0 = 15) since the OCRnA then will be double
buffered.
For generating a waveform output in CTC mode, the OCnA output can be set to toggle
its logical level on each compare match by setting the compare output mode bits to tog-
gle mode (COMnA1:0 = 1). The OCnA value will not be visible on the port pin unless the
data direction for the pin is set to output (DDR_OCnA = 1). The waveform generated will
have a maximum frequency of f
waveform frequency is defined by the following equation:
The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).
As for the normal mode of operation, the TOVn flag is set in the same timer clock cycle
that the counter counts from MAX to 0x0000.
The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5,6,7,14, or 15) pro-
vides a high frequency PWM waveform generation option. The fast PWM differs from
the other PWM options by its single-slope operation. The counter counts from BOTTOM
to TOP then restarts from BOTTOM. In non-inverting Compare Output mode, the output
compare (OCnx) is set on the compare match between TCNTn and OCRnx, and cleared
at TOP. In inverting compare output mode output is cleared on compare match and set
at TOP. Due to the single-slope operation, the operating frequency of the fast PWM
mode can be twice as high as the phase correct and phase and frequency correct PWM
modes that use dual-slope operation. This high frequency makes the fast PWM mode
well suited for power regulation, rectification, and DAC applications. High frequency
allows physically small sized external components (coils, capacitors), hence reduces
total system cost.
TCNTn
OCnA
(Toggle)
Period
1
f
OCnA
OC
n
2
A
= f
=
clk_I/O
-------------------------------------------------- -
2 N
/2 when OCRnA is set to zero (0x0000). The
3
(
f
1
clk_I/O
+
OCRnA
4
)
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
(COMnA1:0 = 1)
2467M–AVR–11/04

Related parts for ATMEGA128-16AU