ATMEGA128-16AU Atmel, ATMEGA128-16AU Datasheet - Page 87

IC AVR MCU 128K 16MHZ 5V 64TQFP

ATMEGA128-16AU

Manufacturer Part Number
ATMEGA128-16AU
Description
IC AVR MCU 128K 16MHZ 5V 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
2-Wire, JTAG, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
4
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Controller Family/series
AVR MEGA
No. Of I/o's
53
Eeprom Memory Size
4096Byte
Ram Memory Size
4KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AU
Manufacturer:
MITSUBISHI
Quantity:
104
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
3 340
Part Number:
ATMEGA128-16AU
Quantity:
2 673
Part Number:
ATMEGA128-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
2 832
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
525
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA128-16AU
Quantity:
3 000
Part Number:
ATMEGA128-16AUR
Manufacturer:
Atmel
Quantity:
10 000
External Interrupts
External Interrupt Control
Register A – EICRA
2467M–AVR–11/04
The External Interrupts are triggered by the INT7:0 pins. Observe that, if enabled, the
interrupts will trigger even if the INT7:0 pins are configured as outputs. This feature pro-
vides a way of generating a software interrupt. The External Interrupts can be triggered
by a falling or rising edge or a low level. This is set up as indicated in the specification for
the External Interrupt Control Registers – EICRA (INT3:0) and EICRB (INT7:4). When
the external interrupt is enabled and is configured as level triggered, the interrupt will
trigger as long as the pin is held low. Note that recognition of falling or rising edge inter-
rupts on INT7:4 requires the presence of an I/O clock, described in “Clock Systems and
their Distribution” on page 34. Low level interrupts and the edge interrupt on INT3:0 are
detected asynchronously. This implies that these interrupts can be used for waking the
part also from sleep modes other than Idle mode. The I/O clock is halted in all sleep
modes except Idle mode.
Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. This makes the MCU
less sensitive to noise. The changed level is sampled twice by the Watchdog Oscillator
clock. The period of the Watchdog Oscillator is 1 µs (nominal) at 5.0V and 25°C. The
frequency of the Watchdog Oscillator is voltage dependent as shown in the “Electrical
Characteristics” on page 321. The MCU will wake up if the input has the required level
during this sampling or if it is held until the end of the start-up time. The start-up time is
defined by the SUT fuses as described in “Clock Systems and their Distribution” on
page 34. If the level is sampled twice by the Watchdog Oscillator clock but disappears
before the end of the start-up time, the MCU will still wake up, but no interrupt will be
generated. The required level must be held long enough for the MCU to complete the
wake up to trigger the level interrupt.
This Register can not be reached in ATmega103 compatibility mode, but the initial value
defines INT3:0 as low level interrupts, as in ATmega103.
• Bits 7..0 – ISC31, ISC30 – ISC00, ISC00: External Interrupt 3 - 0 Sense Control
The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag
and the corresponding interrupt mask in the EIMSK is set. The level and edges on the
external pins that activate the interrupts are defined in Table 48. Edges on INT3..INT0
are registered asynchronously. Pulses on INT3:0 pins wider than the minimum pulse
width given in Table 49 will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until
the completion of the currently executing instruction to generate an interrupt. If enabled,
a level triggered interrupt will generate an interrupt request as long as the pin is held
low. When changing the ISCn bit, an interrupt can occur. Therefore, it is recommended
to first disable INTn by clearing its Interrupt Enable bit in the EIMSK Register. Then, the
ISCn bit can be changed. Finally, the INTn interrupt flag should be cleared by writing a
logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the interrupt is re-
enabled.
Bit
Read/Write
Initial Value
Bits
ISC31
R/W
7
0
ISC30
R/W
6
0
ISC21
R/W
5
0
ISC20
R/W
4
0
ISC11
R/W
3
0
ISC10
R/W
2
0
ISC01
R/W
ATmega128
1
0
ISC00
R/W
0
0
EICRA
87

Related parts for ATMEGA128-16AU