ATMEGA128-16AU Atmel, ATMEGA128-16AU Datasheet - Page 119

IC AVR MCU 128K 16MHZ 5V 64TQFP

ATMEGA128-16AU

Manufacturer Part Number
ATMEGA128-16AU
Description
IC AVR MCU 128K 16MHZ 5V 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
2-Wire, JTAG, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
4
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Controller Family/series
AVR MEGA
No. Of I/o's
53
Eeprom Memory Size
4096Byte
Ram Memory Size
4KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AU
Manufacturer:
MITSUBISHI
Quantity:
104
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
3 340
Part Number:
ATMEGA128-16AU
Quantity:
2 673
Part Number:
ATMEGA128-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
2 832
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL
Quantity:
525
Part Number:
ATMEGA128-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA128-16AU
Quantity:
3 000
Part Number:
ATMEGA128-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Force Output Compare
Compare Match Blocking by
TCNTn Write
Using the Output Compare
Unit
2467M–AVR–11/04
The OCRnx Register is double buffered when using any of the twelve Pulse Width Mod-
ulation (PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of
operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCRnx Compare Register to either TOP or BOTTOM of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical
PWM pulses, thereby making the output glitch-free.
The OCRnx Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCRnx buffer register, and if double
buffering is disabled the CPU will access the OCRnx directly. The content of the OCR1x
(buffer or compare) register is only changed by a write operation (the Timer/Counter
does not update this register automatically as the TCNTn- and ICRn Register). There-
fore OCRnx is not read via the high byte Temporary Register (TEMP). However, it is a
good practice to read the low byte first as when accessing other 16-bit registers. Writing
the OCRnx registers must be done via the TEMP Register since the compare of all 16
bits is done continuously. The high byte (OCRnxH) has to be written first. When the high
byte I/O location is written by the CPU, the TEMP Register will be updated by the value
written. Then when the low byte (OCRnxL) is written to the lower 8 bits, the high byte will
be copied into the upper 8 bits of either the OCRnx buffer or OCRnx Compare Register
in the same system clock cycle.
For more information of how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 112.
In non-PWM Waveform Generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOCnx) bit. Forcing compare
match will not set the OCFnx flag or reload/clear the timer, but the OCnx pin will be
updated as if a real compare match had occurred (the COMnx1:0 bits settings define
whether the OCnx pin is set, cleared or toggled).
All CPU writes to the TCNTn Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCRnx to be
initialized to the same value as TCNTn without triggering an interrupt when the
Timer/Counter clock is enabled.
Since writing TCNTn in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNTn when using any of the
output compare channels, independent of whether the Timer/Counter is running or not.
If the value written to TCNTn equals the OCRnx value, the compare match will be
missed, resulting in incorrect waveform generation. Do not write the TCNTn equal to
TOP in PWM modes with variable TOP values. The compare match for the TOP will be
ignored and the counter will continue to 0xFFFF. Similarly, do not write the TCNTn value
equal to BOTTOM when the counter is downcounting.
The setup of the OCnx should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OCnx value is to use the force
output compare (FOCnx) strobe bits in normal mode. The OCnx Register keeps its
value even when changing between waveform generation modes.
Be aware that the COMnx1:0 bits are not double buffered together with the compare
value. Changing the COMnx1:0 bits will take effect immediately.
ATmega128
119

Related parts for ATMEGA128-16AU