EP1S10F484I6 Altera, EP1S10F484I6 Datasheet - Page 325

IC STRATIX FPGA 10K LE 484-FBGA

EP1S10F484I6

Manufacturer Part Number
EP1S10F484I6
Description
IC STRATIX FPGA 10K LE 484-FBGA
Manufacturer
Altera
Series
Stratix®r
Datasheets

Specifications of EP1S10F484I6

Number Of Logic Elements/cells
10570
Number Of Labs/clbs
1057
Total Ram Bits
920448
Number Of I /o
335
Voltage - Supply
1.425 V ~ 1.575 V
Mounting Type
Surface Mount
Operating Temperature
0°C ~ 85°C
Package / Case
484-FBGA
Family Name
Stratix
Number Of Logic Blocks/elements
10570
# I/os (max)
335
Frequency (max)
450.05MHz
Process Technology
0.13um (CMOS)
Operating Supply Voltage (typ)
1.5V
Logic Cells
10570
Ram Bits
920448
Operating Supply Voltage (min)
1.425V
Operating Supply Voltage (max)
1.575V
Operating Temp Range
-40C to 100C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
484
Package Type
FC-FBGA
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP1S10F484I6
Manufacturer:
ALTERA
Quantity:
3 000
Part Number:
EP1S10F484I6
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1S10F484I6
Manufacturer:
ALTERA
0
Part Number:
EP1S10F484I6
0
Part Number:
EP1S10F484I6N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1S10F484I6N
Manufacturer:
XILINX
0
Part Number:
EP1S10F484I6N
Manufacturer:
ALTERA
0
Altera Corporation
July 2005
f
Phase Delay
The Quartus II software automatically sets the phase taps and counter
settings according to the phase shift entry. You enter a desired phase shift
and the Quartus II software automatically sets the closest setting
achievable. This type of phase shift is not reconfigurable during system
operation. For phase shifting, enter a phase shift (in degrees or time units)
for each PLL clock output port or for all outputs together in one shift.
You can select phase-shifting values in time units with a resolution of
156.25 to 416.66 ps. This resolution is a function of frequency input and
the multiplication and division factors (that is, it is a function of the VCO
period), with the finest step being equal to an eighth ( 0.125) of the VCO
period. Each clock output counter can choose a different phase of the
VCO period from up to eight taps for individual fine-step selection. Also,
each clock output counter can use a unique initial count setting to achieve
individual coarse-shift selection in steps of one VCO period. The
combination of coarse and fine shifts allows phase shifting for the entire
input clock period.
The equation to determine the precision of the phase shifting in degrees
is: 45
45 , and smaller steps are possible depending on the multiplication and
division ratio necessary on the output counter port.
This type of phase shift provides the highest precision since it is the least
sensitive to process, supply, and temperature variation.
Lock Detect
The lock output indicates that there is a stable clock output signal in
phase with the reference clock. Without any additional circuitry, the lock
signal may toggle as the PLL begins tracking the reference clock. You may
need to gate the lock signal for use as a system control. The lock signal
from the locked port can drive the logic array or an output pin.
Whenever the PLL loses lock for any reason (be it excessive inclk jitter,
clock switchover, PLL reconfiguration, power supply noise, etc.), the PLL
must be reset with the areset signal to guarantee correct phase
relationship between the PLL output clocks. If the phase relationship
between the input clock versus output clock, and between different
output clocks from the PLL is not important in your design, the PLL need
not be reset.
See the Stratix FPGA Errata Sheet for more information on implementing
the gated lock signal in your design.
post-scale counter value. Therefore, the maximum step size is
General-Purpose PLLs in Stratix & Stratix GX Devices
Stratix Device Handbook, Volume 2
1–15

Related parts for EP1S10F484I6