LPC1759FBD80,551 NXP Semiconductors, LPC1759FBD80,551 Datasheet - Page 480

IC ARM CORTEX MCU 512K 80-LQFP

LPC1759FBD80,551

Manufacturer Part Number
LPC1759FBD80,551
Description
IC ARM CORTEX MCU 512K 80-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1759FBD80,551

Program Memory Type
FLASH
Program Memory Size
512KB (512K x 8)
Package / Case
80-LQFP
Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
120MHz
Connectivity
CAN, I²C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
52
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 6x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
LPC17
Core
ARM Cortex M3
Data Bus Width
32 bit
Data Ram Size
64 KB
Interface Type
Ethernet, USB, OTG, CAN
Maximum Clock Frequency
120 MHz
Number Of Programmable I/os
52
Number Of Timers
4
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 6 Channel
On-chip Dac
10 bit
Package
80LQFP
Device Core
ARM Cortex M3
Family Name
LPC17xx
Maximum Speed
120 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
568-4968
935290523551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1759FBD80,551
Manufacturer:
LT
Quantity:
375
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP/恩智浦
Quantity:
20 000
NXP Semiconductors
Table 413: Transmit Clock Rate register (I2TXRATE - address 0x400A 8020) bit description
UM10360
User manual
Bit
7:0
15:8
31:16
Symbol
Y_divider
X_divider
-
20.5.9.1 Notes on fractional rate generators
20.5.10 Receive Clock Rate register (I2SRXRATE - 0x400A 8024)
Description
I
transmit MCLK. Eight bits of fractional divide supports a wide range of possibilities. A value of
0 stops the clock.
I
transmit MCLK. A value of 0 stops the clock. Eight bits of fractional divide supports a wide
range of possibilities. Note: the resulting ratio X/Y is divided by 2.
Reserved, user software should not write ones to reserved bits. The value read from a
reserved bit is not defined.
2
2
S
S
Note: If the value of X or Y is 0, then no clock is generated. Also, the value of Y must be
greater than or equal to X.
The nature of a fractional rate generator is that there will be some output jitter with some
divide settings. This is because the fractional rate generator is a fully digital function, so
output clock transitions are synchronous with the source clock, whereas a theoretical
perfect fractional rate may have edges that are not related to the source clock. So, output
jitter will not be greater than plus or minus one source clock between consecutive clock
edges.
For example, if X = 0x07 and Y = 0x11, the fractional rate generator will output 7 clocks for
every 17 (11 hex) input clocks, distributed as evenly as it can. In this example, there is no
way to distribute the output clocks in a perfectly even fashion, so some clocks will be
longer than others. The output is divided by 2 in order to square it up, which also helps
with the jitter. The frequency averages out to exactly (7/17) / 2, but some clocks will be a
slightly different length than their neighbors. It is possible to avoid jitter entirely by
choosing fractions such that X divides evenly into Y, such as 2/4, 2/6, 3/9, 1/N, etc.
The MCLK rate for the I
register. The required I2SRXRATE setting depends on the peripheral clock rate
(PCLK_I2S) and the desired MCLK rate (such as 256 fs).
The receiver MCLK rate is generated using a fractional rate generator, dividing down the
frequency of PCLK_I2S. Values of the numerator (X) and the denominator (Y) must be
chosen to produce a frequency twice that desired for the receiver MCLK, which must be
an integer multiple of the receiver bit clock rate. Fractional rate generators have some
aspects that the user should be aware of when choosing settings. These are discussed in
Section
I2SRXMCLK = PCLK_I2S * (X/Y) /2
Note: If the value of X or Y is 0, then no clock is generated. Also, the value of Y must be
greater than or equal to X.
transmit MCLK rate denominator. This value is used to divide PCLK to produce the
transmit MCLK rate numerator. This value is used to multiply PCLK by to produce the
20.5.9.1. The equation for the fractional rate generator is:
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 19 August 2010
2
S receiver is determined by the values in the I2SRXRATE
Chapter 20: LPC17xx I2S
UM10360
© NXP B.V. 2010. All rights reserved.
480 of 840
Reset
Value
0
0
NA

Related parts for LPC1759FBD80,551