LPC1759FBD80,551 NXP Semiconductors, LPC1759FBD80,551 Datasheet - Page 190

IC ARM CORTEX MCU 512K 80-LQFP

LPC1759FBD80,551

Manufacturer Part Number
LPC1759FBD80,551
Description
IC ARM CORTEX MCU 512K 80-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1759FBD80,551

Program Memory Type
FLASH
Program Memory Size
512KB (512K x 8)
Package / Case
80-LQFP
Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
120MHz
Connectivity
CAN, I²C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
52
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 6x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
LPC17
Core
ARM Cortex M3
Data Bus Width
32 bit
Data Ram Size
64 KB
Interface Type
Ethernet, USB, OTG, CAN
Maximum Clock Frequency
120 MHz
Number Of Programmable I/os
52
Number Of Timers
4
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 6 Channel
On-chip Dac
10 bit
Package
80LQFP
Device Core
ARM Cortex M3
Family Name
LPC17xx
Maximum Speed
120 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
568-4968
935290523551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1759FBD80,551
Manufacturer:
LT
Quantity:
375
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP/恩智浦
Quantity:
20 000
NXP Semiconductors
UM10360
User manual
If the descriptor is for the last fragment of a frame (or for the whole frame if there are no
fragments), then depending on the success or failure of the frame reception, error flags
(Error, NoDescriptor, Overrun, AlignmentError, RangeError, LengthError, SymbolError, or
CRCError) are set in StatusInfo. The RxSize field is set to the number of bytes actually
written to the fragment buffer, -1 encoded. For fragments not being the last in the frame
the RxSize will match the size of the buffer. The hash CRCs of the destination and source
addresses of a packet are calculated once for all the fragments belonging to the same
packet and then stored in every StatusHashCRC word of the statuses associated with the
corresponding fragments. If the reception reports an error, any remaining data in the
receive frame is discarded and the LastFrag bit will be set in the receive status field, so
the error flags in all but the last fragment of a frame will always be 0.
The status of the last received frame can also be inspected by reading the RSV register.
The register does not report statuses on a fragment basis and does not store information
of previously received frames. RSV is provided primarily for debug purposes, because the
communication between driver software and the Ethernet block takes place through the
frame descriptors.
Reception error handling
When an error occurs during the receive process, the Rx DMA manager will report the
error via the receive StatusInfo written in the Status array and the IntStatus interrupt status
register.
The receive process can generate several types of errors: AlignmentError, RangeError,
LengthError, SymbolError, CRCError, Overrun, and NoDescriptor. All have corresponding
bits in the receive StatusInfo. In addition to the separate bits in the StatusInfo,
AlignmentError, RangeError, LengthError, SymbolError, and CRCError are ORed together
into the Error bit of the StatusInfo. Errors are also propagated to the IntStatus register; the
RxError bit in the IntStatus register is set if there is an AlignmentError, RangeError,
LengthError, SymbolError, CRCError, or NoDescriptor error; nonfatal overrun errors are
reported in the RxError bit of the IntStatus register; fatal Overrun errors are report in the
RxOverrun bit of the IntStatus register. On fatal overrun errors, the Rx data path needs to
be soft reset by setting the RxReset bit in the Command register.
Overrun errors can have three causes:
The first overrun situation will result in an incomplete frame with a NoDescriptor status
and the RxError bit in IntStatus set. Software should discard the partially received frame.
In the second overrun situation the frame data will be corrupt which results in the Overrun
status bit being set in the Status word while the IntError interrupt bit is set. In the third case
In the case of a multi-fragment reception, the next descriptor may be missing. In this
case the NoDescriptor field is set in the status word of the previous descriptor and the
RxError in the IntStatus register is set. This error is nonfatal.
The data flow on the receiver data interface stalls, corrupting the packet. In this case
the overrun bit in the status word is set and the RxError bit in the IntStatus register is
set. This error is nonfatal.
The flow of reception statuses stalls and a new status has to be written while a
previous status still waits to be transferred across the memory interface. This error will
corrupt the hardware state and requires the hardware to be soft reset. The error is
detected and sets the Overrun bit in the IntStatus register.
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 19 August 2010
Chapter 10: LPC17xx Ethernet
UM10360
© NXP B.V. 2010. All rights reserved.
190 of 840

Related parts for LPC1759FBD80,551