LPC1759FBD80,551 NXP Semiconductors, LPC1759FBD80,551 Datasheet - Page 185

IC ARM CORTEX MCU 512K 80-LQFP

LPC1759FBD80,551

Manufacturer Part Number
LPC1759FBD80,551
Description
IC ARM CORTEX MCU 512K 80-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1759FBD80,551

Program Memory Type
FLASH
Program Memory Size
512KB (512K x 8)
Package / Case
80-LQFP
Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
120MHz
Connectivity
CAN, I²C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
52
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 6x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
LPC17
Core
ARM Cortex M3
Data Bus Width
32 bit
Data Ram Size
64 KB
Interface Type
Ethernet, USB, OTG, CAN
Maximum Clock Frequency
120 MHz
Number Of Programmable I/os
52
Number Of Timers
4
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 6 Channel
On-chip Dac
10 bit
Package
80LQFP
Device Core
ARM Cortex M3
Family Name
LPC17xx
Maximum Speed
120 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
568-4968
935290523551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1759FBD80,551
Manufacturer:
LT
Quantity:
375
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP/恩智浦
Quantity:
20 000
NXP Semiconductors
UM10360
User manual
The transmission can generate several types of errors: LateCollision, ExcessiveCollision,
ExcessiveDefer, Underrun, and NoDescriptor. All have corresponding bits in the
transmission StatusInfo word. In addition to the separate bits in the StatusInfo word,
LateCollision, ExcessiveCollision, and ExcessiveDefer are ORed together into the Error
bit of the Status. Errors are also propagated to the IntStatus register; the TxError bit in the
IntStatus register is set in the case of a LateCollision, ExcessiveCollision, ExcessiveDefer,
or NoDescriptor error; Underrun errors are reported in the TxUnderrun bit of the IntStatus
register.
Underrun errors can have three causes:
The first and second situations are nonfatal and the device driver has to re-send the frame
or have upper software layers re-send the frame. In the third case the hardware is in an
undefined state and needs to be soft reset by setting the TxReset bit in the Command
register.
After reporting a LateCollision, ExcessiveCollision, ExcessiveDefer or Underrun error, the
transmission of the erroneous frame will be aborted, remaining transmission data and
frame fragments will be discarded and transmission will continue with the next frame in
the descriptor array.
Device drivers should catch the transmission errors and take action.
Transmit triggers interrupts
The transmit data path can generate four different interrupt types:
The next fragment in a multi-fragment transmission is not available. This is a nonfatal
error. A NoDescriptor status will be returned on the previous fragment and the TxError
bit in IntStatus will be set.
The transmission fragment data is not available when the Ethernet block has already
started sending the frame. This is a nonfatal error. An Underrun status will be returned
on transfer and the TxError bit in IntStatus will be set.
The flow of transmission statuses stalls and a new status has to be written while a
previous status still waits to be transferred across the memory interface. This is a fatal
error which can only be resolved by a soft reset of the hardware.
If the Interrupt bit in the descriptor Control field is set, the Tx DMA will set the
TxDoneInt bit in the IntStatus register after sending the fragment and committing the
associated transmission status to memory. Even if a descriptor (fragment) is not the
last in a multi-fragment frame the Interrupt bit in the descriptor can be used to
generate an interrupt.
If the descriptor array is empty while the Ethernet hardware is enabled the hardware
will set the TxFinishedInt bit of the IntStatus register.
If the AHB interface does not consume the transmission statuses at a sufficiently high
bandwidth the transmission may underrun in which case the TxUnderrun bit will be set
in the IntStatus register. This is a fatal error which requires a soft reset of the
transmission queue.
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 19 August 2010
Chapter 10: LPC17xx Ethernet
UM10360
© NXP B.V. 2010. All rights reserved.
185 of 840

Related parts for LPC1759FBD80,551