S912XET256J2VAGR Freescale Semiconductor, S912XET256J2VAGR Datasheet - Page 702

no-image

S912XET256J2VAGR

Manufacturer Part Number
S912XET256J2VAGR
Description
16-bit Microcontrollers - MCU Watchdog OSC/Timer -40 C to + 105 C HCS12X MCU SPI
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of S912XET256J2VAGR

Core
HCS12X
Data Bus Width
16 bit
Maximum Clock Frequency
50 MHz
Program Memory Size
256 KB
Data Ram Size
16 KB
On-chip Adc
Yes
Package / Case
LQFP
Mounting Style
SMD/SMT
A/d Bit Size
12 bit
A/d Channels Available
24
Interface Type
CAN, SCI, SPI
Maximum Operating Temperature
+ 105 C
Minimum Operating Temperature
- 40 C
Number Of Programmable I/os
119
Number Of Timers
25
Program Memory Type
Flash
Supply Voltage - Max
1.98 V, 2.9 V, 5.5 V
Supply Voltage - Min
1.72 V, 2.7 V, 3.13 V
Chapter 19 Pulse-Width Modulator (S12PWM8B8CV1)
2 registers become the high order bytes of the double byte channel. When channels 0 and 1 are
concatenated, channel 0 registers become the high order bytes of the double byte channel.
See
Function.
702
CON67
CON45
CON23
CON01
PFREZ
PSWAI
Field
Section 19.4.2.7, “PWM 16-Bit Functions”
7
6
5
4
3
2
Concatenate Channels 6 and 7
0 Channels 6 and 7 are separate 8-bit PWMs.
1 Channels 6 and 7 are concatenated to create one 16-bit PWM channel. Channel 6 becomes the high order
Concatenate Channels 4 and 5
0 Channels 4 and 5 are separate 8-bit PWMs.
1 Channels 4 and 5 are concatenated to create one 16-bit PWM channel. Channel 4 becomes the high order
Concatenate Channels 2 and 3
0 Channels 2 and 3 are separate 8-bit PWMs.
1 Channels 2 and 3 are concatenated to create one 16-bit PWM channel. Channel 2 becomes the high order
Concatenate Channels 0 and 1
0 Channels 0 and 1 are separate 8-bit PWMs.
1 Channels 0 and 1 are concatenated to create one 16-bit PWM channel. Channel 0 becomes the high order
PWM Stops in Wait Mode — Enabling this bit allows for lower power consumption in wait mode by disabling
the input clock to the prescaler.
0 Allow the clock to the prescaler to continue while in wait mode.
1 Stop the input clock to the prescaler whenever the MCU is in wait mode.
PWM Counters Stop in Freeze Mode — In freeze mode, there is an option to disable the input clock to the
prescaler by setting the PFRZ bit in the PWMCTL register. If this bit is set, whenever the MCU is in freeze mode,
the input clock to the prescaler is disabled. This feature is useful during emulation as it allows the PWM function
to be suspended. In this way, the counters of the PWM can be stopped while in freeze mode so that once normal
program flow is continued, the counters are re-enabled to simulate real-time operations. Since the registers can
still be accessed in this mode, to re-enable the prescaler clock, either disable the PFRZ bit or exit freeze mode.
0 Allow PWM to continue while in freeze mode.
1 Disable PWM input clock to the prescaler whenever the part is in freeze mode. This is useful for emulation.
Change these bits only when both corresponding channels are disabled.
byte and channel 7 becomes the low order byte. Channel 7 output pin is used as the output for this 16-bit
PWM (bit 7 of port PWMP). Channel 7 clock select control-bit determines the clock source, channel 7 polarity
bit determines the polarity, channel 7 enable bit enables the output and channel 7 center aligned enable bit
determines the output mode.
byte and channel 5 becomes the low order byte. Channel 5 output pin is used as the output for this 16-bit
PWM (bit 5 of port PWMP). Channel 5 clock select control-bit determines the clock source, channel 5 polarity
bit determines the polarity, channel 5 enable bit enables the output and channel 5 center aligned enable bit
determines the output mode.
byte and channel 3 becomes the low order byte. Channel 3 output pin is used as the output for this 16-bit
PWM (bit 3 of port PWMP). Channel 3 clock select control-bit determines the clock source, channel 3 polarity
bit determines the polarity, channel 3 enable bit enables the output and channel 3 center aligned enable bit
determines the output mode.
byte and channel 1 becomes the low order byte. Channel 1 output pin is used as the output for this 16-bit
PWM (bit 1 of port PWMP). Channel 1 clock select control-bit determines the clock source, channel 1 polarity
bit determines the polarity, channel 1 enable bit enables the output and channel 1 center aligned enable bit
determines the output mode.
MC9S12XE-Family Reference Manual Rev. 1.25
Table 19-9. PWMCTL Field Descriptions
for a more detailed description of the concatenation PWM
NOTE
Description
Freescale Semiconductor

Related parts for S912XET256J2VAGR