SAM9M10 Atmel Corporation, SAM9M10 Datasheet - Page 1085

no-image

SAM9M10

Manufacturer Part Number
SAM9M10
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9M10

Flash (kbytes)
0 Kbytes
Pin Count
324
Max. Operating Frequency
400 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
160
Ext Interrupts
160
Usb Transceiver
3
Usb Speed
Hi-Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
2
Uart
5
Lin
4
Ssc
2
Ethernet
1
Sd / Emmc
2
Graphic Lcd
Yes
Video Decoder
Yes
Camera Interface
Yes
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
440
Resistive Touch Screen
Yes
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
64
Self Program Memory
NO
External Bus Interface
2
Dram Memory
DDR2/LPDDR, SDRAM/LPSDR
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
0.9 to 1.1
Fpu
No
Mpu / Mmu
No / Yes
Timers
6
Output Compare Channels
6
Input Capture Channels
6
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
No
45.5.3
45.6
45.6.1
45.6.1.1
45.6.1.2
45.6.1.3
6355D–ATARM–7-Sep-11
Functional Description
Interrupt Sources
DMA Controller
Configuration Block
AHB Interface
Channel-U
The LCD Controller interrupt line is connected to one of the internal sources of the Advanced
Interrupt Controller. Using the LCD Controller interrupt requires prior programming of the AIC.
Table 45-3.
The LCD Controller consists of two main blocks
and the LCD controller core (LCDC core). The DMA controller reads the display data from an
external memory through a AHB master interface. The LCD controller core formats the display
data. The LCD controller core continuously pumps the pixel data into the LCD module via the
LCD data bus (LCDD[23:0]); this bus is timed by the LCDDOTCK, LCDDEN, LCDHSYNC, and
LCDVSYNC signals.
The configuration block is a set of programmable registers that are used to configure the DMA
controller operation. These registers are written via the AHB slave interface. Only word access is
allowed.
For details on the configuration registers, see
1111.
This block generates the AHB transactions. It generates undefined-length incrementing bursts
as well as 4-, 8- or 16-beat incrementing bursts. The size of the transfer can be configured in the
BRSTLN field of the DMAFRMCFG register. For details on this register, see
figuration Register” on page
This block stores the base address and the number of words transferred for this channel (frame
in single scan mode and Upper Panel in dual scan mode) since the beginning of the frame. It
also generates the end of frame signal.
It has two pointers, the base address and the number of words to transfer. When the module
receives a new_frame signal, it reloads the number of words to transfer pointer with the size of
the frame/panel. When the module receives the new_frame signal, it also reloads the base
address with the base address programmed by the host.
The size of the frame/panel can be programmed in the FRMSIZE field of the DMAFRMCFG
Register. This size is calculated as follows:
where:
X_size = ((LINESIZE+1)*Bpp+PIXELOFF)/32
Instance
LCDC
Peripheral IDs
Frame_size
23
ID
1116.
=
X_size*Y_size
------------------------------------- -
32
“LCD Controller (LCDC) User Interface” on page
(Figure 45-1 on page
1082), the DMA controller
SAM9M10
“DMA Frame Con-
1085

Related parts for SAM9M10