ATMEGA64M1-15MZ Atmel, ATMEGA64M1-15MZ Datasheet - Page 16

no-image

ATMEGA64M1-15MZ

Manufacturer Part Number
ATMEGA64M1-15MZ
Description
MCU AVR 64KB FLASH 3PSC 32-VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA64M1-15MZ

Package / Case
32-VQFN
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Operating Temperature
-40°C ~ 125°C
Speed
16MHz
Eeprom Size
2K x 8
Core Processor
AVR
Program Memory Type
FLASH
Ram Size
4K x 8
Program Memory Size
64KB (64K x 8)
Data Converters
A/D 11x10b; D/A 1x10b
Oscillator Type
Internal
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Connectivity
CAN, LIN, SPI, UART/USART
Core Size
8-Bit
Processor Series
ATMEGA64x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATADAPCAN01
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of I /o
-
Lead Free Status / Rohs Status
 Details
3.6
16
Stack Pointer
Atmel ATmega16/32/64/M1/C1
Figure 3-3.
In the different addressing modes these address registers have functions as fixed displace-
ment, automatic increment, and automatic decrement (see the instruction set reference for
details).
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always
points to the top of the Stack. Note that the Stack is implemented as growing from higher
memory locations to lower memory locations. This implies that a Stack PUSH command
decreases the Stack Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program
before any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be
set to point above 0x100. The Stack Pointer is decremented by one when data is pushed onto
the Stack with the PUSH instruction, and it is decremented by two when the return address is
pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by
one when data is popped from the Stack with the POP instruction, and it is incremented by two
when data is popped from the Stack with return from subroutine RET or return from interrupt
RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH
Register will not be present.
Bit
Read/Write
Initial Value
X-register
Y-register
Z-register
15
SP15
SP7
7
R/W
R/W
Top address of the SRAM (0x04FF/0x08FF/0x10FF)
The X-, Y-, and Z-registers
15
7
R27 (0x1B)
15
7
R29 (0x1D)
15
7
R31 (0x1F)
14
SP14
SP6
6
R/W
R/W
13
SP13
SP5
5
R/W
R/W
XH
YH
ZH
0
12
SP12
SP4
4
R/W
R/W
11
SP11
SP3
3
R/W
R/W
0
0
7
R26 (0x1A)
7
R28 (0x1C)
7
R30 (0x1E)
10
SP10
SP2
2
R/W
R/W
9
SP9
SP1
1
R/W
R/W
XL
YL
ZL
0
8
SP8
SP0
0
R/W
R/W
7647G–AVR–09/11
SPH
0
0
0
0
0
SPL

Related parts for ATMEGA64M1-15MZ