MC9S12P32CFT Freescale Semiconductor, MC9S12P32CFT Datasheet - Page 384

no-image

MC9S12P32CFT

Manufacturer Part Number
MC9S12P32CFT
Description
MCU 16BIT 32K FLASH 48-QFN
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12P32CFT

Core Processor
HCS12
Core Size
16-Bit
Speed
32MHz
Connectivity
CAN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
34
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.72 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-QFN Exposed Pad
Processor Series
S12P
Core
HCS12
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
KIT33812ECUEVME, DEMO9S12PFAME
Package
48QFN EP
Family Name
HCS12
Maximum Speed
32 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Interface Type
CAN/SCI/SPI
On-chip Adc
10-chx12-bit
Number Of Timers
8
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Serial Communication Interface (S12SCIV5)
Figure 11-17
while in RXD_2 the break starts in the middle of a transmission. If BRKDFE = 1, in RXD_1 case there
will be no byte transferred to the receive buffer and the RDRF flag will not be modified. Also no framing
error or parity error will be flagged from this transfer. In RXD_2 case, however the break signal starts later
during the transmission. At the expected stop bit position the byte received so far will be transferred to the
receive buffer, the receive data register full flag will be set, a framing error and if enabled and appropriate
a parity error will be set. Once the break is detected the BRKDIF flag will be set.
11.4.5.4
An idle character (or preamble) contains all logic 1s and has no start, stop, or parity bit. Idle character
length depends on the M bit in SCI control register 1 (SCICR1). The preamble is a synchronizing idle
character that begins the first transmission initiated after writing the TE bit from 0 to 1.
If the TE bit is cleared during a transmission, the TXD pin becomes idle after completion of the
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle
character to be sent after the frame currently being transmitted.
384
Zero Bit Counter
RXD_1
RXD_2
Idle Characters
shows two cases of break detect. In trace RXD_1 the break symbol starts with the start bit,
When queueing an idle character, return the TE bit to logic 1 before the stop
bit of the current frame shifts out through the TXD pin. Setting TE after the
stop bit appears on TXD causes data previously written to the SCI data
register to be lost. Toggle the TE bit for a queued idle character while the
TDRE flag is set and immediately before writing the next byte to the SCI
data register.
If the TE bit is clear and the transmission is complete, the SCI is not the
master of the TXD pin
Start Bit Position
1
2
Figure 11-17. Break Detection if BRKDFE = 1 (M = 0)
3
4
Zero Bit Counter
S12P-Family Reference Manual, Rev. 1.13
5
6
7
8
NOTE
1
9
Stop Bit Position
10
2
FE = 1
3
BRKDIF = 1
. . .
4
5
6
7
8
9
Freescale Semiconductor
10
BRKDIF = 1
. . .

Related parts for MC9S12P32CFT