MC9S12P32CFT Freescale Semiconductor, MC9S12P32CFT Datasheet - Page 378

no-image

MC9S12P32CFT

Manufacturer Part Number
MC9S12P32CFT
Description
MCU 16BIT 32K FLASH 48-QFN
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12P32CFT

Core Processor
HCS12
Core Size
16-Bit
Speed
32MHz
Connectivity
CAN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
34
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.72 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-QFN Exposed Pad
Processor Series
S12P
Core
HCS12
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
KIT33812ECUEVME, DEMO9S12PFAME
Package
48QFN EP
Family Name
HCS12
Maximum Speed
32 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Interface Type
CAN/SCI/SPI
On-chip Adc
10-chx12-bit
Number Of Timers
8
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Serial Communication Interface (S12SCIV5)
for every zero bit. No pulse is transmitted for every one bit. When receiving data, the IR pulses should be
detected using an IR photo diode and transformed to CMOS levels by the IR receive decoder (external
from the MCU). The narrow pulses are then stretched by the infrared submodule to get back to a serial bit
stream to be received by the SCI.The polarity of transmitted pulses and expected receive pulses can be
inverted so that a direct connection can be made to external IrDA transceiver modules that uses active low
pulses.
The infrared submodule receives its clock sources from the SCI. One of these two clocks are selected in
the infrared submodule in order to generate either 3/16, 1/16, 1/32 or 1/4 narrow pulses during
transmission. The infrared block receives two clock sources from the SCI, R16XCLK and R32XCLK,
which are configured to generate the narrow pulse width during transmission. The R16XCLK and
R32XCLK are internal clocks with frequencies 16 and 32 times the baud rate respectively. Both
R16XCLK and R32XCLK clocks are used for transmitting data. The receive decoder uses only the
R16XCLK clock.
11.4.1.1
The infrared transmit encoder converts serial bits of data from transmit shift register to the TXD pin. A
narrow pulse is transmitted for a zero bit and no pulse for a one bit. The narrow pulse is sent in the middle
of the bit with a duration of 1/32, 1/16, 3/16 or 1/4 of a bit time. A narrow high pulse is transmitted for a
zero bit when TXPOL is cleared, while a narrow low pulse is transmitted for a zero bit when TXPOL is set.
11.4.1.2
The infrared receive block converts data from the RXD pin to the receive shift register. A narrow pulse is
expected for each zero received and no pulse is expected for each one received. A narrow high pulse is
expected for a zero bit when RXPOL is cleared, while a narrow low pulse is expected for a zero bit when
RXPOL is set. This receive decoder meets the edge jitter requirement as defined by the IrDA serial infrared
physical layer specification.
11.4.2
This module provides some basic support for the LIN protocol. At first this is a break detect circuitry
making it easier for the LIN software to distinguish a break character from an incoming data stream. As a
further addition is supports a collision detection at the bit level as well as cancelling pending transmissions.
11.4.3
The SCI uses the standard NRZ mark/space data format. When Infrared is enabled, the SCI uses RZI data
format where zeroes are represented by light pulses and ones remain low. See
378
LIN Support
Data Format
Infrared Transmit Encoder
Infrared Receive Decoder
S12P-Family Reference Manual, Rev. 1.13
Figure 11-15
Freescale Semiconductor
below.

Related parts for MC9S12P32CFT