MC9S12P32CFT Freescale Semiconductor, MC9S12P32CFT Datasheet - Page 178

no-image

MC9S12P32CFT

Manufacturer Part Number
MC9S12P32CFT
Description
MCU 16BIT 32K FLASH 48-QFN
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12P32CFT

Core Processor
HCS12
Core Size
16-Bit
Speed
32MHz
Connectivity
CAN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
34
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.72 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-QFN Exposed Pad
Processor Series
S12P
Core
HCS12
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
KIT33812ECUEVME, DEMO9S12PFAME
Package
48QFN EP
Family Name
HCS12
Maximum Speed
32 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Interface Type
CAN/SCI/SPI
On-chip Adc
10-chx12-bit
Number Of Timers
8
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
S12S Debug Module (S12SDBGV2)
6.4.2.1.4
Comparator A features an NDB control bit, which allows data bus comparators to be configured to either
trigger on equivalence or trigger on difference. This allows monitoring of a difference in the contents of
an address location from an expected value.
When matching on an equivalence (NDB=0), each individual data bus bit position can be masked out by
clearing the corresponding mask bit (DBGADHM/DBGADLM) so that it is ignored in the comparison. A
match occurs when all data bus bits with corresponding mask bits set are equivalent. If all mask register
bits are clear, then a match is based on the address bus only, the data bus is ignored.
When matching on a difference, mask bits can be cleared to ignore bit positions. A match occurs when any
data bus bit with corresponding mask bit set is different. Clearing all mask bits, causes all bits to be ignored
and prevents a match because no difference can be detected. In this case address bus equivalence does not
cause a match.
6.4.2.2
Using the AB comparator pair for a range comparison, the data bus can also be used for qualification by
using the comparator A data registers. Furthermore the DBGACTL RW and RWE bits can be used to
qualify the range comparison on either a read or a write access. The corresponding DBGBCTL bits are
ignored. The SZE and SZ control bits are ignored in range mode. The comparator A TAG bit is used to tag
range comparisons. The comparator B TAG bit is ignored in range modes. In order for a range comparison
using comparators A and B, both COMPEA and COMPEB must be set; to disable range comparisons both
must be cleared. The comparator A BRK bit is used to for the AB range, the comparator B BRK bit is
ignored in range mode.
When configured for range comparisons and tagging, the ranges are accurate only to word boundaries.
6.4.2.2.1
In the Inside Range comparator mode, comparator pair A and B can be configured for range comparisons.
This configuration depends upon the control register (DBGC2). The match condition requires that a valid
match for both comparators happens on the same bus cycle. A match condition on only one comparator is
not valid. An aligned word access which straddles the range boundary is valid only if the aligned address
is inside the range.
178
NDB
Range Comparisons
0
0
1
1
Comparator A Data Bus Comparison NDB Dependency
Inside Range (CompA_Addr ≤ address ≤ CompB_Addr)
DBGADHM[n] /
DBGADLM[n]
0
1
0
1
Table 6-35. NDB and MASK bit dependency
S12P-Family Reference Manual, Rev. 1.13
Compare data bus bit. Match on equivalence.
Compare data bus bit. Match on difference.
Do not compare data bus bit.
Do not compare data bus bit.
Comment
Freescale Semiconductor

Related parts for MC9S12P32CFT