SAM9RL64 Atmel Corporation, SAM9RL64 Datasheet - Page 230

no-image

SAM9RL64

Manufacturer Part Number
SAM9RL64
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9RL64

Flash (kbytes)
0 Kbytes
Pin Count
217
Max. Operating Frequency
240 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
118
Ext Interrupts
118
Usb Transceiver
1
Usb Speed
Hi-Speed
Usb Interface
Device
Spi
1
Twi (i2c)
2
Uart
5
Ssc
2
Sd / Emmc
1
Graphic Lcd
Yes
Video Decoder
No
Camera Interface
No
Adc Channels
6
Adc Resolution (bits)
10
Adc Speed (ksps)
220
Resistive Touch Screen
Yes
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
64
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.08 to 1.32
Fpu
No
Mpu / Mmu
No / Yes
Timers
3
Output Compare Channels
3
Input Capture Channels
3
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
No
24.3.1
24.3.2
230
AT91SAM9R64/RL64
Write Access
Read Access
The only configuration required for ECC is the NAND Flash or the SmartMedia page size
(528/1056/2112/4224). Page size is configured setting the PAGESIZE field in the ECC Mode
Register (ECC_MR).
ECC is automatically computed as soon as a read (00h)/write (80h) command to the NAND
Flash or the SmartMedia is detected. Read and write access must start at a page boundary.
ECC results are available as soon as the counter reaches the end of the main area. Values in
the ECC Parity Register (ECC_PR) and ECC NParity Register (ECC_NPR) are then valid and
locked until a new start condition occurs (read/write command followed by address cycles).
Once the flash memory page is written, the computed ECC code is available in the ECC Parity
Error (ECC_PR) and ECC_NParity Error (ECC_NPR) registers. The ECC code value must be
written by the software application in the extra area used for redundancy.
After reading the whole data in the main area, the application must perform read accesses to the
extra area where ECC code has been previously stored. Error detection is automatically per-
formed by the ECC controller. Please note that it is mandatory to read consecutively the entire
main area and the locations where Parity and NParity values have been previously stored to let
the ECC controller perform error detection.
The application can check the ECC Status Register (ECC_SR) for any detected errors.
It is up to the application to correct any detected error. ECC computation can detect four differ-
ent circumstances:
ECC Status Register, ECC Parity Register and ECC NParity Register are cleared when a
read/write command is detected or a software reset is performed.
For Single-bit Error Correction and Double-bit Error Detection (SEC-DED) hsiao code is used.
32-bit ECC is generated in order to perform one bit correction per 512/1024/2048/4096 8- or 16-
bit words. Of the 32 ECC bits, 26 bits are for line parity and 6 bits are for column parity. They are
generated according to the schemes shown in
• No error: XOR between the ECC computation and the ECC code stored at the end of the
• Recoverable error: Only the RECERR flag in the ECC Status register (ECC_SR) is set. The
• ECC error: The ECCERR flag in the ECC Status Register is set. An error has been detected
• Non correctable error: The MULERR flag in the ECC Status Register is set. Several
NAND Flash or SmartMedia page is equal to 0. No error flags in the ECC Status Register
(ECC_SR).
corrupted word offset in the read page is defined by the WORDADDR field in the ECC Parity
Register (ECC_PR). The corrupted bit position in the concerned word is defined in the
BITADDR field in the ECC Parity Register (ECC_PR).
in the ECC code stored in the Flash memory. The position of the corrupted bit can be found
by the application performing an XOR between the Parity and the NParity contained in the
ECC code stored in the flash memory.
unrecoverable errors have been detected in the flash memory page.
Figure 24-2
and
Figure
24-3.
6289D–ATARM–3-Oct-11

Related parts for SAM9RL64