S912XEP768J5MAGR Freescale Semiconductor, S912XEP768J5MAGR Datasheet - Page 272

no-image

S912XEP768J5MAGR

Manufacturer Part Number
S912XEP768J5MAGR
Description
16-bit Microcontrollers - MCU 16-bit 768K Flash
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of S912XEP768J5MAGR

Rohs
yes
Core
HCS12X
Processor Series
MC9S12
Data Bus Width
16 bit
Maximum Clock Frequency
50 MHz
Program Memory Size
768 KB
Data Ram Size
48 KB
On-chip Adc
Yes
Operating Supply Voltage
3.3 V to 5 V
Operating Temperature Range
- 40 C to + 125 C
Package / Case
LQFP-144
Mounting Style
SMD/SMT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S912XEP768J5MAGR
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Chapter 6 Interrupt (S12XINTV2)
6.4.1
The CPU handles both reset requests and interrupt requests. The XINT module contains registers to
configure the priority level of each I bit maskable interrupt request which can be used to implement an
interrupt priority scheme. This also includes the possibility to nest interrupt requests. A priority decoder
is used to evaluate the priority of a pending interrupt request.
6.4.2
After system reset all interrupt requests with a vector address lower than or equal to (vector base + 0x00F2)
are enabled, are set up to be handled by the CPU and have a pre-configured priority level of 1. Exceptions
to this rule are the non-maskable interrupt requests and the spurious interrupt vector request at (vector base
+ 0x0010) which cannot be disabled, are always handled by the CPU and have a fixed priority levels. A
priority level of 0 effectively disables the associated I bit maskable interrupt request.
If more than one interrupt request is configured to the same interrupt priority level the interrupt request
with the higher vector address wins the prioritization.
The following conditions must be met for an I bit maskable interrupt request to be processed.
6.4.2.1
The current interrupt processing level (IPL) is stored in the condition code register (CCR) of the CPU. This
way the current IPL is automatically pushed to the stack by the standard interrupt stacking procedure. The
new IPL is copied to the CCR from the priority level of the highest priority active interrupt request channel
which is configured to be handled by the CPU. The copying takes place when the interrupt vector is
fetched. The previous IPL is automatically restored by executing the RTI instruction.
272
1. The local interrupt enabled bit in the peripheral module must be set.
2. The setup in the configuration register associated with the interrupt request channel must meet the
3. The I bit in the condition code register (CCR) of the CPU must be cleared.
4. There is no access violation interrupt request pending.
5. There is no SYS, SWI, BDM, TRAP, or XIRQ request pending.
following conditions:
a) The XGATE request enable bit must be 0 to have the CPU handle the interrupt request.
b) The priority level must be set to non zero.
c) The priority level must be greater than the current interrupt processing level in the condition
code register (CCR) of the CPU (PRIOLVL[2:0] > IPL[2:0]).
S12X Exception Requests
Interrupt Prioritization
Interrupt Priority Stack
All non I bit maskable interrupt requests always have higher priority than
I bit maskable interrupt requests. If an I bit maskable interrupt request is
interrupted by a non I bit maskable interrupt request, the currently active
interrupt processing level (IPL) remains unaffected. It is possible to nest
non I bit maskable interrupt requests, e.g., by nesting SWI or TRAP calls.
MC9S12XE-Family Reference Manual Rev. 1.25
NOTE
Freescale Semiconductor

Related parts for S912XEP768J5MAGR