AT91SAM7S256D-AU Atmel, AT91SAM7S256D-AU Datasheet - Page 245

no-image

AT91SAM7S256D-AU

Manufacturer Part Number
AT91SAM7S256D-AU
Description
ARM Microcontrollers - MCU 256K Flash SRAM 64K ARM based MCU
Manufacturer
Atmel
Series
SAM7S256r
Datasheet

Specifications of AT91SAM7S256D-AU

Rohs
yes
Core
ARM
Processor Series
AT91SAM
Data Bus Width
16 bit/32 bit
Maximum Clock Frequency
55 MHz
Program Memory Size
256 KB
Data Ram Size
64 KB
On-chip Adc
Yes
Operating Supply Voltage
3 V to 3.6 V
Operating Temperature Range
- 40 C to + 85 C
Package / Case
LQFP-64
Mounting Style
SMD/SMT
Interface Type
2-Wire, I2S, SPI, USART
Length
7 mm

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM7S256D-AU
Manufacturer:
ATMEL
Quantity:
101
Part Number:
AT91SAM7S256D-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7S256D-AU-999
Manufacturer:
Atmel
Quantity:
10 000
Figure 27-4. Output Line Timings
27.4.8
27.4.9
Write PIO_ODSR at 1
Write PIO_ODSR at 0
Write PIO_CODR
Write PIO_SODR
Inputs
Input Glitch Filtering
PIO_ODSR
PIO_PDSR
MCK
The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This reg-
ister indicates the level of the I/O lines regardless of their configuration, whether uniquely as an
input or driven by the PIO controller or driven by a peripheral.
Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.
Optional input glitch filters are independently programmable on each I/O line. When the glitch fil-
ter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically
rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For pulse
durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or may not
be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be
visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably filtered out, its
duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle
latency if the pin level change occurs before a rising edge. However, this latency does not
appear if the pin level change occurs before a falling edge. This is illustrated in
The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.
When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The
glitch filters require that the PIO Controller clock is enabled.
APB Access
2 cycles
SAM7S Series [DATASHEET]
APB Access
6175M–ATARM–26-Oct-12
2 cycles
Figure
27-5.
245

Related parts for AT91SAM7S256D-AU