ATMEGA128-16AI Atmel, ATMEGA128-16AI Datasheet - Page 67

IC AVR MCU 128K 16MHZ 64-TQFP

ATMEGA128-16AI

Manufacturer Part Number
ATMEGA128-16AI
Description
IC AVR MCU 128K 16MHZ 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AI

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
For Use With
ATSTK501 - ADAPTER KIT FOR 64PIN AVR MCU
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Other names
Q1167170A

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AI
Manufacturer:
FSC
Quantity:
7 600
Part Number:
ATMEGA128-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AI
Manufacturer:
TI
Quantity:
175
Part Number:
ATMEGA128-16AI
Manufacturer:
ATMEL
Quantity:
1 896
Part Number:
ATMEGA128-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Reading the Pin Value
2467V–AVR–02/11
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the SFIOR Register can be written to one to
disable all pull-ups in all ports.
Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.
Table 25
Table 25. Port Pin Configurations
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in
tute a synchronizer. This is needed to avoid metastability if the physical pin changes value near
the edge of the internal clock, but it also introduces a delay.
the synchronization when reading an externally applied pin value. The maximum and minimum
propagation delays are denoted t
Figure 31. Synchronization when Reading an Externally Applied Pin Value
Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
DDxn
0
0
0
1
1
INSTRUCTIONS
summarizes the control signals for the pin value.
PORTxn
SYSTEM CLK
SYNC LATCH
0
1
1
0
1
PINxn
(in SFIOR)
r17
PUD
X
0
1
X
X
Figure
Output
Output
pd,max
Input
Input
Input
I/O
XXX
30, the PINxn Register bit and the preceding latch consti-
and t
Pull-up
Yes
pd,min
No
No
No
No
respectively.
t
pd, max
Comment
Tri-state (Hi-Z)
Pxn will source current if ext. pulled
low.
Tri-state (Hi-Z)
Output Low (Sink)
Output High (Source)
0x00
XXX
t
pd, min
Figure 31
in r17, PINx
shows a timing diagram of
ATmega128
0xFF
67

Related parts for ATMEGA128-16AI