ATMEGA128-16AI Atmel, ATMEGA128-16AI Datasheet - Page 281

IC AVR MCU 128K 16MHZ 64-TQFP

ATMEGA128-16AI

Manufacturer Part Number
ATMEGA128-16AI
Description
IC AVR MCU 128K 16MHZ 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AI

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
For Use With
ATSTK501 - ADAPTER KIT FOR 64PIN AVR MCU
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Other names
Q1167170A

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AI
Manufacturer:
FSC
Quantity:
7 600
Part Number:
ATMEGA128-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AI
Manufacturer:
TI
Quantity:
175
Part Number:
ATMEGA128-16AI
Manufacturer:
ATMEL
Quantity:
1 896
Part Number:
ATMEGA128-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Setting the Boot
Loader Lock Bits by
SPM
EEPROM Write
Prevents Writing to
SPMCSR
Reading the Fuse and
Lock Bits from
Software
2467V–AVR–02/11
To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The only accessible lock bits
are the Boot Lock bits that may prevent the Application and Boot Loader section from any soft-
ware update by the MCU.
See
Flash access.
If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR.
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to
load the Z-pointer with $0001 (same as used for reading the Lock bits). For future compatibility It
is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the lock-bits. When pro-
gramming the Lock Bits the entire Flash can be read during the operation.
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with $0001 and set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruc-
tion is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCSR,
the value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN
bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-
SET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.
The algorithm for reading the Fuse Low bits is similar to the one described above for reading the
Lock bits. To read the Fuse Low bits, load the Z-pointer with $0000 and set the BLBSET and
SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the
BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low bits (FLB) will be
loaded in the destination register as shown below. Refer to
description and mapping of the Fuse Low bits.
Similarly, when reading the Fuse High bits, load $0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
the value of the Fuse High bits (FHB) will be loaded in the destination register as shown below.
Refer to
When reading the Extended Fuse bits, load $0002 in the Z-pointer. When an LPM instruction is
executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the
value of the Extended Fuse bits (EFB) will be loaded in the destination register as shown below.
Refer to
Bit
R0
Bit
Rd
Bit
Rd
Bit
Rd
Bit
Rd
Table 108
Table 118 on page 288
Table 117 on page 287
FHB7
FLB7
and
7
1
7
7
7
7
Table 109
FHB6
FLB6
6
6
6
6
1
6
BLB12
BLB12
FLB5
FHB5
for how the different settings of the Boot Loader Bits affect the
for detailed description and mapping of the Fuse High bits.
for detailed description and mapping of the Fuse High bits.
5
5
5
5
5
BLB11
BLB11
FHB4
FLB4
4
4
4
4
4
BLB02
BLB02
FHB3
FLB3
3
3
3
3
3
BLB01
BLB01
FHB2
FLB2
2
2
2
2
2
Table 119 on page 288
FHB1
FLB1
EFB1
LB2
1
1
1
1
1
1
FHB0
ATmega128
FLB0
EFB0
LB1
0
1
0
0
0
0
for a detailed
281

Related parts for ATMEGA128-16AI