ATMEGA128-16AI Atmel, ATMEGA128-16AI Datasheet - Page 22

IC AVR MCU 128K 16MHZ 64-TQFP

ATMEGA128-16AI

Manufacturer Part Number
ATMEGA128-16AI
Description
IC AVR MCU 128K 16MHZ 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AI

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
For Use With
ATSTK501 - ADAPTER KIT FOR 64PIN AVR MCU
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Other names
Q1167170A

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AI
Manufacturer:
FSC
Quantity:
7 600
Part Number:
ATMEGA128-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AI
Manufacturer:
TI
Quantity:
175
Part Number:
ATMEGA128-16AI
Manufacturer:
ATMEL
Quantity:
1 896
Part Number:
ATMEGA128-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a boot loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See
“Boot Loader
Support – Read-While-Write Self-Programming” on page 273
for details about boot
programming.
Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the global interrupt flag cleared
during the four last steps to avoid these problems.
When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,
the CPU is halted for two cycles before the next instruction is executed.
• Bit 0 – EERE: EEPROM Read Enable
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.
The user should poll the EEWE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.
The calibrated Oscillator is used to time the EEPROM accesses.
Table 2
lists the typical pro-
gramming time for EEPROM access from the CPU.
Table 2. EEPROM Programming Time
Number of Calibrated RC
(1)
Symbol
Oscillator Cycles
Typ Programming Time
EEPROM Write (from CPU)
8448
8.5ms
Note:
1. Uses 1MHz clock, independent of CKSEL-fuse settings.
ATmega128
22
2467V–AVR–02/11

Related parts for ATMEGA128-16AI