ATMEGA128-16AI Atmel, ATMEGA128-16AI Datasheet - Page 230

IC AVR MCU 128K 16MHZ 64-TQFP

ATMEGA128-16AI

Manufacturer Part Number
ATMEGA128-16AI
Description
IC AVR MCU 128K 16MHZ 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AI

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
For Use With
ATSTK501 - ADAPTER KIT FOR 64PIN AVR MCU
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Other names
Q1167170A

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AI
Manufacturer:
FSC
Quantity:
7 600
Part Number:
ATMEGA128-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AI
Manufacturer:
TI
Quantity:
175
Part Number:
ATMEGA128-16AI
Manufacturer:
ATMEL
Quantity:
1 896
Part Number:
ATMEGA128-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Analog to
Digital
Converter
Features
230
ATmega128
The Atmel
connected to an 8-channel Analog Multiplexer which allows 8 single-ended voltage inputs con-
structed from the pins of Port F. The single-ended voltage inputs refer to 0V (GND).
The device also supports 16 differential voltage input combinations. Two of the differential inputs
(ADC1, ADC0 and ADC3, ADC2) are equipped with a programmable gain stage, providing
amplification steps of 0 dB (1x), 20dB (10x), or 46dB (200x) on the differential input voltage
before the A/D conversion. Seven differential analog input channels share a common negative
terminal (ADC1), while any other ADC input can be selected as the positive input terminal. If 1x
or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 7-bit resolution can be
expected.
The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in
The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than
±0.3V from V
pin.
Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The voltage refer-
ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.
10-bit Resolution
0.5LSB Integral Non-linearity
±2LSB Absolute Accuracy
13 - 260µs Conversion Time
Up to 76.9kSPS (Up to 15 kSPS at Maximum Resolution)
8 Multiplexed Single Ended Input Channels
7 Differential Input Channels
2 Differential Input Channels with Optional Gain of 10x and 200x
Optional Left Adjustment for ADC Result Readout
0 - VCC ADC Input Voltage Range
Selectable 2.56V ADC Reference Voltage
Free Running or Single Conversion Mode
Interrupt on ADC Conversion Complete
Sleep Mode Noise Canceler
®
AVR
CC
. See the paragraph
®
ATmega128 features a 10-bit successive approximation ADC. The ADC is
“ADC Noise Canceler” on page 236
on how to connect this
2467V–AVR–02/11
Figure
108.

Related parts for ATMEGA128-16AI