ATMEGA128-16AI Atmel, ATMEGA128-16AI Datasheet - Page 224

IC AVR MCU 128K 16MHZ 64-TQFP

ATMEGA128-16AI

Manufacturer Part Number
ATMEGA128-16AI
Description
IC AVR MCU 128K 16MHZ 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16AI

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
For Use With
ATSTK501 - ADAPTER KIT FOR 64PIN AVR MCU
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Other names
Q1167170A

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128-16AI
Manufacturer:
FSC
Quantity:
7 600
Part Number:
ATMEGA128-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128-16AI
Manufacturer:
TI
Quantity:
175
Part Number:
ATMEGA128-16AI
Manufacturer:
ATMEL
Quantity:
1 896
Part Number:
ATMEGA128-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Miscellaneous States
Table 92. Miscellaneous States
Combining Several
TWI Modes
224
Status Code
(TWSR)
Prescaler Bits
are 0
$F8
$00
ATmega128
Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware
No relevant state information
available; TWINT = “0”
Bus error due to an illegal
START or STOP condition
There are two status codes that do not correspond to a defined TWI state, see
Status $F8 indicates that no relevant information is available because the TWINT flag is not set.
This occurs between other states, and when the TWI is not involved in a serial transfer.
Status $00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed slave mode and to clear the TWSTO flag (no other bits in TWCR
are affected). The SDA and SCL lines are released, and no STOP condition is transmitted.
In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:
1. The transfer must be initiated
2. The EEPROM must be instructed what location should be read
3. The reading must be performed
4. The transfer must be finished
Note that data is transmitted both from master to slave and vice versa. The master must instruct
the slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The master must keep control of the bus during all these steps, and the steps
should be carried out as an atomical operation. If this principle is violated in a multimaster sys-
tem, another master can alter the data pointer in the EEPROM between steps 2 and 3, and the
master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the master keeps ownership of the bus. The following
figure shows the flow in this transfer.
Figure 104. Combining Several TWI Modes to Access a Serial EEPROM
S
S = START
Application Software Response
To/from TWDR
No TWDR action
No TWDR action
Transmitted from master to slave
SLA+W
A
To TWCR
STA
No TWCR action
0
Master Transmitter
ADDRESS
STO
1
TWINT
1
A
Rs = REPEATED START
Rs
Transmitted from slave to master
TWEA
X
SLA+R
Wait or proceed current transfer
Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.
Next Action Taken by TWI Hardware
A
Master Receiver
DATA
Table
P = STOP
2467V–AVR–02/11
A
92.
P

Related parts for ATMEGA128-16AI