ATMEGA64RZAV-10PU Atmel, ATMEGA64RZAV-10PU Datasheet - Page 76

MCU ATMEGA644/AT86RF230 40-DIP

ATMEGA64RZAV-10PU

Manufacturer Part Number
ATMEGA64RZAV-10PU
Description
MCU ATMEGA644/AT86RF230 40-DIP
Manufacturer
Atmel
Series
ATMEGAr
Datasheets

Specifications of ATMEGA64RZAV-10PU

Frequency
2.4GHz
Modulation Or Protocol
802.15.4 Zigbee
Power - Output
3dBm
Sensitivity
-101dBm
Voltage - Supply
1.8 V ~ 3.6 V
Data Interface
PCB, Surface Mount
Memory Size
64kB Flash, 2kB EEPROM, 4kB RAM
Antenna Connector
PCB, Surface Mount
Package / Case
40-DIP (0.600", 15.24mm)
Wireless Frequency
2.4 GHz
Interface Type
JTAG, SPI
Output Power
3 dBm
For Use With
ATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Operating Temperature
-
Applications
-
Data Rate - Maximum
-
Current - Transmitting
-
Current - Receiving
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
For Use With/related Products
ATmega64
• MOSI/PCINT13 – Port B, Bit 5
MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB5. When the SPI is
enabled as a master, the data direction of this pin is controlled by DDB5. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB5 bit.
PCINT13, Pin Change Interrupt source 13: The PB5 pin can serve as an external interrupt
source.
• SS/OC0B/PCINT12 – Port B, Bit 4
SS: Slave Port Select input. When the SPI is enabled as a slave, this pin is configured as an
input regardless of the setting of DDB4. As a slave, the SPI is activated when this pin is driven
low. When the SPI is enabled as a master, the data direction of this pin is controlled by DDB4.
When the pin is forced to be an input, the pull-up can still be controlled by the PORTB4 bit.
OC0B, Output Compare Match B output: The PB4 pin can serve as an external output for the
Timer/Counter0 Output Compare. The pin has to be configured as an output (DDB4 set “one”) to
serve this function. The OC0B pin is also the output pin for the PWM mode timer function.
PCINT12, Pin Change Interrupt source 12: The PB4 pin can serve as an external interrupt
source.
• AIN1/OC0A/PCINT11, Bit 3
AIN1, Analog Comparator Negative input. This pin is directly connected to the negative input of
the Analog Comparator.
OC0A, Output Compare Match A output: The PB3 pin can serve as an external output for the
Timer/Counter0 Output Compare. The pin has to be configured as an output (DDB3 set “one”) to
serve this function. The OC0A pin is also the output pin for the PWM mode timer function.
PCINT11, Pin Change Interrupt source 11: The PB3 pin can serve as an external interrupt
source.
• AIN0/INT2/PCINT10, Bit 2
AIN0, Analog Comparator Positive input. This pin is directly connected to the positive input of
the Analog Comparator.
INT2, External Interrupt source 2. The PB2 pin can serve as an External Interrupt source to the
MCU.
PCINT10, Pin Change Interrupt source 10: The PB2 pin can serve as an external interrupt
source.
• T1/CLKO/PCINT9, Bit 1
T1, Timer/Counter1 counter source.
CLKO, Divided System Clock: The divided system clock can be output on the PB1 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTB1 and DDB1 settings. It will also be output during reset.
PCINT9, Pin Change Interrupt source 9: The PB1 pin can serve as an external interrupt source.
ATmega644
76
2593N–AVR–07/10

Related parts for ATMEGA64RZAV-10PU