ATMEGA64RZAV-10PU Atmel, ATMEGA64RZAV-10PU Datasheet - Page 110

MCU ATMEGA644/AT86RF230 40-DIP

ATMEGA64RZAV-10PU

Manufacturer Part Number
ATMEGA64RZAV-10PU
Description
MCU ATMEGA644/AT86RF230 40-DIP
Manufacturer
Atmel
Series
ATMEGAr
Datasheets

Specifications of ATMEGA64RZAV-10PU

Frequency
2.4GHz
Modulation Or Protocol
802.15.4 Zigbee
Power - Output
3dBm
Sensitivity
-101dBm
Voltage - Supply
1.8 V ~ 3.6 V
Data Interface
PCB, Surface Mount
Memory Size
64kB Flash, 2kB EEPROM, 4kB RAM
Antenna Connector
PCB, Surface Mount
Package / Case
40-DIP (0.600", 15.24mm)
Wireless Frequency
2.4 GHz
Interface Type
JTAG, SPI
Output Power
3 dBm
For Use With
ATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Operating Temperature
-
Applications
-
Data Rate - Maximum
-
Current - Transmitting
-
Current - Receiving
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
For Use With/related Products
ATmega64
14.5
110
Counter Unit
ATmega644
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 14-2
Figure 14-2. Counter Unit Block Diagram
Signal description (internal signals):
The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) con-
taining the upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight
bits. The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNTnH I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNTnH value when the TCNTnL is read, and
TCNTnH is updated with the temporary register value when TCNTnL is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNTn Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.
Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clk
selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the
timer is stopped. However, the TCNTn value can be accessed by the CPU, independent of
whether clk
count operations.
The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OCnx. For more details about advanced counting
sequences and waveform generation, see
Count
Direction
Clear
clk
TOP
BOTTOM
T
n
TCNTnH (8-bit)
TEMP (8-bit)
T
shows a block diagram of the counter and its surroundings.
n
is present or not. A CPU write overrides (has priority over) all counter clear or
TCNTn (16-bit Counter)
DATA BUS
T
n
). The clk
TCNTnL (8-bit)
(8-bit)
Increment or decrement TCNTn by 1.
Select between increment and decrement.
Clear TCNTn (set all bits to zero).
Timer/Counter clock.
Signalize that TCNTn has reached maximum value.
Signalize that TCNTn has reached minimum value (zero).
T
n
can be generated from an external or internal clock source,
Direction
Count
Clear
”Modes of Operation” on page
Control Logic
TOP
BOTTOM
TOVn
(Int.Req.)
clk
Tn
Clock Select
( From Prescaler )
Detector
Edge
116.
2593N–AVR–07/10
Tn

Related parts for ATMEGA64RZAV-10PU