C8051F902-GM Silicon Laboratories Inc, C8051F902-GM Datasheet - Page 121

IC MCU 8BIT 8KB FLASH 24QFN

C8051F902-GM

Manufacturer Part Number
C8051F902-GM
Description
IC MCU 8BIT 8KB FLASH 24QFN
Manufacturer
Silicon Laboratories Inc
Series
C8051F9xxr
Datasheets

Specifications of C8051F902-GM

Program Memory Type
FLASH
Program Memory Size
8KB (8K x 8)
Package / Case
24-QFN
Core Processor
8051
Core Size
8-Bit
Speed
25MHz
Connectivity
SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
16
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
0.9 V ~ 3.6 V
Data Converters
A/D 15x10/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
C8051F9x
Core
8051
Data Ram Size
768 B
Interface Type
UART
Maximum Clock Frequency
25 MHz
Number Of Timers
4
Operating Supply Voltage
0.9 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
PK51, CA51, A51, ULINK2
Development Tools By Supplier
C8051F912DK
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit
Package
24QFN EP
Device Core
8051
Family Name
C8051F90x
Maximum Speed
25 MHz
Data Bus Width
8 Bit
Number Of Programmable I/os
16
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
336-1848-5
C8051F91x-C8051F90x
12.3. Interrupt Priorities
Each interrupt source can be individually programmed to one of two priority levels: low or high. A low
priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt
cannot be preempted. If a high priority interrupt preempts a low priority interrupt, the low priority interrupt
will finish execution after the high priority interrupt completes. Each interrupt has an associated interrupt
priority bit in in the Interrupt Priority and Extended Interrupt Priority registers used to configure its priority
level. Low priority is the default.
If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both
interrupts have the same priority level, a fixed priority order is used to arbitrate. See Table 12.1 on
page 122 to determine the fixed priority order used to arbitrate between simultaneously recognized
interrupts.
12.4. Interrupt Latency
Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are
sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 7
system clock cycles: 1 clock cycle to detect the interrupt, 1 clock cycle to execute a single instruction, and
5 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a
single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the
maximum response time for an interrupt (when no other interrupt is currently being serviced or the new
interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as
the next instruction. In this case, the response time is 19 system clock cycles: 1 clock cycle to detect the
interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 5 clock
cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher
priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and
following instruction.
Rev. 1.0
121

Related parts for C8051F902-GM