ST92F150CV1QB STMicroelectronics, ST92F150CV1QB Datasheet - Page 339

MCU 8BIT 128K FLASH 100PQFP

ST92F150CV1QB

Manufacturer Part Number
ST92F150CV1QB
Description
MCU 8BIT 128K FLASH 100PQFP
Manufacturer
STMicroelectronics
Series
ST9r
Datasheet

Specifications of ST92F150CV1QB

Core Processor
ST9
Core Size
8/16-Bit
Speed
24MHz
Connectivity
CAN, I²C, LIN, SCI, SPI
Peripherals
DMA, LVD, POR, PWM, WDT
Number Of I /o
77
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 105°C
Package / Case
100-QFP
Processor Series
ST92F15x
Core
ST9
Data Bus Width
8 bit, 16 bit
Data Ram Size
6 KB
Interface Type
CAN, I2C, SCI, SPI
Maximum Clock Frequency
24 MHz
Number Of Programmable I/os
80
Number Of Timers
5 x 16 bit
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Development Tools By Supplier
ST92F150-EPB
Minimum Operating Temperature
- 40 C
On-chip Adc
16 bit x 10 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
497-4882

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ST92F150CV1QB
Manufacturer:
STMicroelectronics
Quantity:
10 000
Part Number:
ST92F150CV1QB
Manufacturer:
ST
0
Part Number:
ST92F150CV1QBTR
Manufacturer:
ST
0
Part Number:
ST92F150CV1QBTRE
Manufacturer:
ST
0
CONTROLLER AREA NETWORK (Cont’d)
10.10.5.7 Bit Timing
The bit timing logic monitors the serial bus-line and
performs sampling and adjustment of the sample
point by synchronizing on the start-bit edge and re-
synchronizing on the following edges.
Its operation may be explained simply by splitting
nominal bit time into three segments as follows:
– Synchronization segment (SYNC_SEG): a bit
– Bit segment 1 (BS1): defines the location of the
– Bit segment 2 (BS2): defines the location of the
Figure 152. Bit Timing
change is expected to occur within this time seg-
ment. It has a fixed length of one time quantum
(1 x t
sample point. It includes the PROP_SEG and
PHASE_SEG1 of the CAN standard. Its duration
is programmable between 1 and 16 time quanta
but may be automatically lengthened to compen-
sate for positive phase drifts due to differences in
the frequency of the various nodes of the net-
work.
transmit point. It represents the PHASE_SEG2
of the CAN standard. Its duration is programma-
ble between 1 and 8 time quanta but may also be
automatically shortened to compensate for neg-
ative phase drifts.
B
NominalBitTime
with:
t
t
t
t
BRP = BRP[5:0] + 1 = Baud Rate Prescaler
BRP[5:0] is defined in the CBTR0 Register,
TS1[3:0] and TS2[2:0] are defined in the CBTR1 Register.
CAN
BS1
BS2
CAN
CPU
audRate
SYNC_SEG
= t
= t
).
= t
= time period of the CPU clock,
1 x t
CAN
CAN
CPU
CAN
x (TS1[3:0] + 1) ,
x (TS2[2:0] + 1),
x BRP,
=
------------------------------------------------ -
NominalBitTime
=
1
1
×
BIT SEGMENT 1 (BS1)
t
CAN
+
t
BS1
t
BS1
NOMINAL BIT TIME
+
t
BS2
CONTROLLER AREA NETWORK (bxCAN)
The resynchronization jump width (RJW) defines
an upper bound to the amount of lengthening or
shortening of the bit segments. It is programmable
between 1 and 4 time quanta.
A valid edge is defined as the first transition in a bit
time from dominant to recessive bus level provid-
ed the controller itself does not send a recessive
bit.
If a valid edge is detected in BS1 instead of
SYNC_SEG, BS1 is extended by up to RJW so
that the sample point is delayed.
Conversely, if a valid edge is detected in BS2 in-
stead of SYNC_SEG, BS2 is shortened by up to
RJW so that the transmit point is moved earlier.
As a safeguard against programming errors, the
configuration of the Bit Timing Register (BTR) is
only possible while the device is in STANDBY
mode.
Note: for a detailed description of the CAN bit tim-
ing and resynchronization mechanism, please re-
fer to the ISO 11898 standard.
SAMPLE POINT
BIT SEGMENT 2 (BS2)
t
BS2
TRANSMIT POINT
339/429
9

Related parts for ST92F150CV1QB