ATMEGA64A-MNR Atmel, ATMEGA64A-MNR Datasheet - Page 143

IC MCU AVR 64K FLASH 8QFN

ATMEGA64A-MNR

Manufacturer Part Number
ATMEGA64A-MNR
Description
IC MCU AVR 64K FLASH 8QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA64A-MNR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SPI, UART, I2C
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Operating Temperature Range
- 40 C to + 85 C
Processor To Be Evaluated
ATMEGA64A
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
16. Timer/Counter3, Timer/Counter2 and Timer/Counter1 Prescalers
16.0.1
16.0.2
16.0.3
8160C–AVR–07/09
Internal Clock Source
Prescaler Reset
External Clock Source
Timer/Counter3, Timer/Counter2 and Timer/Counter1 share the same prescaler module, but the
Timer/Counters can have different prescaler settings. The description below applies to all of the
mentioned Timer/Counters.
The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (f
clock source. The prescaled clock has a frequency of either f
f
The prescaler is free running, for example, it operates independently of the Clock Select logic of
the Timer/Counter, and it is shared by Timer/Counter1, Timer/Counter2, and Timer/Counter3.
Since the prescaler is not affected by the Timer/Counter’s clock select, the state of the prescaler
will have implications for situations where a prescaled clock is used. One example of prescaling
artifacts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The
number of system clock cycles from when the timer is enabled to the first count occurs can be
from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).
It is possible to use the Prescaler Reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also use prescaling. A Prescaler Reset will affect the prescaler period for all Timer/Counters it is
connected to.
An external clock source applied to the Tn pin can be used as Timer/Counter clock
(clk
tion logic. The synchronized (sampled) signal is then passed through the edge detector.
16-1
logic. The registers are clocked at the positive edge of the internal system clock (
is transparent in the high period of the internal system clock.
The edge detector generates one clk
tive (CSn2:0 = 6) edge it detects.
Figure 16-1. Tn Pin Sampling
CLK_I/O
T1
shows a functional equivalent block diagram of the Tn synchronization and edge detector
/clk
/1024.
clk
Tn
T2
I/O
/clk
T3
). The Tn pin is sampled once every system clock cycle by the pin synchroniza-
D Q
LE
CLK_I/O
). Alternatively, one of four taps from the prescaler can be used as a
D Q
T1
/clk
T
2
/clk
T
3
pulse for each positive (CSn2:0 = 7) or nega-
D
CLK_I/O
Q
Edge Detector
/8, f
CLK_I/O
ATmega64A
/64, f
clk
Tn_sync
(To Clock
Select Logic)
CLK_I/O
I/O
). The latch
/256, or
Figure
143

Related parts for ATMEGA64A-MNR