MCF5282CVM80 Freescale Semiconductor, MCF5282CVM80 Datasheet - Page 83

IC MPU 512K 80MHZ 256-MAPBGA

MCF5282CVM80

Manufacturer Part Number
MCF5282CVM80
Description
IC MPU 512K 80MHZ 256-MAPBGA
Manufacturer
Freescale Semiconductor
Series
MCF528xr
Datasheet

Specifications of MCF5282CVM80

Core Processor
Coldfire V2
Core Size
32-Bit
Speed
80MHz
Connectivity
CAN, EBI/EMI, Ethernet, I²C, SPI, UART/USART
Peripherals
DMA, LVD, POR, PWM, WDT
Number Of I /o
150
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Data Converters
A/D 8x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
256-MAPBGA
Controller Family/series
ColdFire
Ram Memory Size
64KB
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of Pwm Channels
8
Digital Ic Case Style
MAPBGA
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MCF5282CVM80
Manufacturer:
FREESCALE
Quantity:
1 831
Part Number:
MCF5282CVM80
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Company:
Part Number:
MCF5282CVM80
Quantity:
4
Part Number:
MCF5282CVM80J
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Table 3-3
3.2.2
The 32-bit MASK implements the low-order 16 bits to minimize the alignment complications involved
with loading and storing only 16 bits. When the MASK is loaded, the low-order 16 bits of the source
operand are actually loaded into the register. When it is stored, the upper 16 bits are all forced to ones.
This register performs a simple AND with the operand address for MAC instructions. The processor
calculates the normal operand address and, if enabled, that address is then ANDed with {0xFFFF,
MASK[15:0]} to form the final address. Therefore, with certain MASK bits cleared, the operand address
can be constrained to a certain memory region. This is used primarily to implement circular queues with
the (An)+ addressing mode.
This minimizes the addressing support required for filtering, convolution, or any routine that implements
a data array as a circular queue. For MAC + MOVE operations, the MASK contents can optionally be
included in all memory effective address calculations. The syntax is as follows:
Freescale Semiconductor
Field
mac.sz
EV
V
1
0
summarizes the interaction of the MACSR[S/U,F/I,R/T] control bits.
Mask Register (MASK)
Ry,RxSF,<ea>yand ,Rw
Overflow. Set if an arithmetic overflow occurs on a MAC or MSAC instruction, indicating that the result
cannot be represented in the limited width of the EMAC. V is set only if a product overflow occurs or the
accumulation overflows the 48-bit structure. V is evaluated on each MAC or MSAC operation and uses the
appropriate PAVn flag in the next-state V evaluation.
Extension overflow. Signals that the last MAC or MSAC instruction overflowed the 32 lsbs in integer mode
or the 40 lsbs in fractional mode of the destination accumulator. However, the result remains accurately
represented in the combined 48-bit accumulator structure. Although an overflow has occurred, the correct
result, sign, and magnitude are contained in the 48-bit accumulator. Subsequent MAC or MSAC operations
may return the accumulator to a valid 32/40-bit result.
MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3
S/U
Table 3-3. Summary of S/U, F/I, and R/T Control Bits
0
0
0
1
1
1
Table 3-2. MACSR Field Descriptions (continued)
F/I
0
1
1
0
1
1
R/T
0
1
0
1
x
x
Signed, integer
Signed, fractional
Truncate on MAC.L and MSAC.L
No round on accumulator stores
Signed, fractional
Round on MAC.L and MSAC.L
Round-to-32-bits on accumulator stores
Unsigned, integer
Signed, fractional
Truncate on MAC.L and MSAC.L
Round-to-16-bits on accumulator stores
Signed, fractional
Round on MAC.L and MSAC.L
Round-to-16-bits on accumulator stores
Operational Modes
Description
Enhanced Multiply-Accumulate Unit (EMAC)
3-5

Related parts for MCF5282CVM80