MC9S12C128VFU Freescale Semiconductor, MC9S12C128VFU Datasheet - Page 306

MC9S12C128VFU

Manufacturer Part Number
MC9S12C128VFU
Description
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of MC9S12C128VFU

Cpu Family
HCS12
Device Core Size
16b
Frequency (max)
25MHz
Interface Type
CAN/SCI/SPI
Program Memory Type
Flash
Program Memory Size
128KB
Total Internal Ram Size
4KB
# I/os (max)
60
Number Of Timers - General Purpose
8
Operating Supply Voltage (typ)
2.5/5V
Operating Supply Voltage (max)
2.75/5.5V
Operating Supply Voltage (min)
2.35/2.97V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 105C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
80
Package Type
PQFP
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12C128VFUE
Manufacturer:
Freescale
Quantity:
38 000
Part Number:
MC9S12C128VFUE
Manufacturer:
FREESCALE
Quantity:
2 100
Part Number:
MC9S12C128VFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12C128VFUE
Manufacturer:
FREESCALE
Quantity:
2 100
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV2)
10.3.2.11 MSCAN Transmit Buffer Selection Register (CANTBSEL)
The CANTBSEL register allows the selection of the actual transmit message buffer, which then will be
accessible in the CANTXFG register space.
Read: Find the lowest ordered bit set to 1, all other bits will be read as 0
Write: Anytime when not in initialization mode
The following gives a short programming example of the usage of the CANTBSEL register:
To get the next available transmit buffer, application software must read the CANTFLG register and write
this value back into the CANTBSEL register. In this example Tx buffers TX1 and TX2 are available. The
value read from CANTFLG is therefore 0b0000_0110. When writing this value back to CANTBSEL, the
Tx buffer TX1 is selected in the CANTXFG because the lowest numbered bit set to 1 is at bit position 1.
Reading back this value out of CANTBSEL results in 0b0000_0010, because only the lowest numbered
bit position set to 1 is presented. This mechanism eases the application software the selection of the next
available Tx buffer.
If all transmit message buffers are deselected, no accesses are allowed to the CANTXFG registers.
306
Module Base + 0x000A
TX[2:0]
Field
2:0
Reset:
LDD CANTFLG; value read is 0b0000_0110
STD CANTBSEL; value written is 0b0000_0110
LDD CANTBSEL; value read is 0b0000_0010
W
R
Transmit Buffer Select — The lowest numbered bit places the respective transmit buffer in the CANTXFG
register space (e.g., TX1 = 1 and TX0 = 1 selects transmit buffer TX0; TX1 = 1 and TX0 = 0 selects transmit
buffer TX1). Read and write accesses to the selected transmit buffer will be blocked, if the corresponding TXEx
bit is cleared and the buffer is scheduled for transmission (see
Register
0 The associated message buffer is deselected
1 The associated message buffer is selected, if lowest numbered bit
The CANTBSEL register is held in the reset state when the initialization
mode is active (INITRQ = 1 and INITAK=1). This register is writable when
not in initialization mode (INITRQ = 0 and INITAK = 0).
0
0
7
Figure 10-14. MSCAN Transmit Buffer Selection Register (CANTBSEL)
(CANTFLG)”).
= Unimplemented
Table 10-15. CANTBSEL Register Field Descriptions
6
0
0
MC9S12C-Family / MC9S12GC-Family
0
0
5
Rev 01.24
NOTE
4
0
0
Description
0
0
3
Section 10.3.2.7, “MSCAN Transmitter Flag
TX2
2
0
Freescale Semiconductor
TX1
0
1
TX0
0
0

Related parts for MC9S12C128VFU