ATMEGA128RZBV-8AU Atmel, ATMEGA128RZBV-8AU Datasheet - Page 324

MCU ATMEGA1280/AT86RF230 100TQFP

ATMEGA128RZBV-8AU

Manufacturer Part Number
ATMEGA128RZBV-8AU
Description
MCU ATMEGA1280/AT86RF230 100TQFP
Manufacturer
Atmel
Series
ATMEGAr
Datasheets

Specifications of ATMEGA128RZBV-8AU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3dBm
Sensitivity
-101dBm
Voltage - Supply
1.8 V ~ 3.6 V
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 8kB RAM
Antenna Connector
PCB, Surface Mount
Package / Case
100-TQFP
Wireless Frequency
2.4 GHz
Interface Type
JTAG, SPI
Output Power
3 dBm
For Use With
ATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Operating Temperature
-
Current - Transmitting
-
Current - Receiving
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
For Use With/related Products
ATmega128
28.6.3
28.6.4
28.6.5
28.6.6
28.6.7
2549M–AVR–09/10
Performing a Page Write
Using the SPM Interrupt
Consideration While Updating BLS
Prevent Reading the RWW Section During Self-Programming
Setting the Boot Loader Lock Bits by SPM
To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling
the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should
be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in
Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.
During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW
section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS
as described in
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See
page 327
To set the Boot Loader Lock bits and general Lock bits, write the desired data to R0, write
“X0001001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR.
See
Boot Loader bits affect the Flash access.
If bits 5:0 in R0 are cleared (zero), the corresponding Lock bit will be programmed if an SPM
instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR. The Z-
pointer is don’t care during this operation, but for future compatibility it is recommended to load
the Z-pointer with 0x0001 (same as used for reading the lO
also recommended to set bits 7 and 6 in R0 to “1” when writing the Lock bits. When program-
ming the Lock bits the entire Flash can be read during the operation.
Bit
R0
Page Write to the RWW section: The NRWW section can be read during the Page Write.
Page Write to the NRWW section: The CPU is halted during the operation.
Table 28-2 on page 321
for an example.
“Interrupts” on page
7
1
6
1
and
ATmega640/1280/1281/2560/2561
BLB12
Table 28-3 on page 321
5
105, or the interrupts must be disabled. Before addressing
“Simple Assembly Code Example for a Boot Loader” on
BLB11
4
BLB02
3
for how the different settings of the
ck
BLB01
bits). For future compatibility it is
“Interrupts” on page
2
LB2
1
LB1
0
105.
324

Related parts for ATMEGA128RZBV-8AU