ATMEGA16M1-MU Atmel, ATMEGA16M1-MU Datasheet - Page 38

no-image

ATMEGA16M1-MU

Manufacturer Part Number
ATMEGA16M1-MU
Description
IC MCU AVR 16K FLASH 32VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16M1-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
CAN, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 11x10b; D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of I /o
-
9.4
9.5
9.6
9.7
38
ADC Noise Reduction Mode
Power-down Mode
Standby Mode
Power Reduction Register
ATmega16M1/32M1/64M1
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.
When the SM2:0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the External Interrupts,
Timer/Counter (if their clock source is external - T0 or T1) and the Watchdog to continue operat-
ing (if enabled). This sleep mode basically halts clk
other clocks to run.
This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Timer/Counter interrupt, an SPM/EEPROM ready interrupt, an External Level Interrupt
on INT3:0 can wake up the MCU from ADC Noise Reduction mode.
When the SM2:0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the External Oscillator is stopped, while the External Interrupts and
the Watchdog continue operating (if enabled). Only an External Reset, a Watchdog Reset, a
Brown-out Reset, a PSC Interrupt, an External Level Interrupt on INT3:0 can wake up the MCU.
This sleep mode basically halts all generated clocks, allowing operation of asynchronous mod-
ules only.
Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to
for details.
When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL fuses that define the
Reset Time-out period, as described in
When the SM2:0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.
The Power Reduction Register (PRR), see
vides a method to stop the clock to individual peripherals to reduce power consumption. The
current state of the peripheral is frozen and the I/O registers can not be read or written.
Resources used by the peripheral when stopping the clock will remain occupied, hence the
peripheral should in most cases be disabled before stopping the clock. Waking up a module,
which is done by clearing the bit in PRR, puts the module in the same state as before shutdown.
A full predictible behaviour of a peripheral is not guaranteed during and after a cycle of stopping
and starting of its clock. So its recommended to stop a peripheral before stopping its clock with
PRR register.
“Clock Sources” on page
“PRR – Power Reduction Register” on page
I/O
, clk
CPU
, and clk
“External Interrupts” on page 59
28.
FLASH
, while allowing the
8209D–AVR–11/10
41, pro-

Related parts for ATMEGA16M1-MU