C8051F131R Silicon Labs, C8051F131R Datasheet - Page 260

no-image

C8051F131R

Manufacturer Part Number
C8051F131R
Description
8-bit Microcontrollers - MCU 128kB 100MIPS 8448B RAM
Manufacturer
Silicon Labs
Datasheet

Specifications of C8051F131R

Product Category
8-bit Microcontrollers - MCU
Core
8051
Data Bus Width
8 bit
Maximum Clock Frequency
100 MHz
Program Memory Size
128 KB
Data Ram Size
8.25 KB
On-chip Adc
Yes
Operating Supply Voltage
2.7 V to 3.6 V
Package / Case
TQFP-64
Mounting Style
SMD/SMT
A/d Bit Size
10 bit
A/d Channels Available
9
Data Rom Size
64 KB
Interface Type
I2C, SMBus, SPI, UART
Maximum Operating Temperature
+ 85 C
Minimum Operating Temperature
- 40 C
Number Of Programmable I/os
32
Number Of Timers
16 bit
Processor Series
C8051
Program Memory Type
Flash
Factory Pack Quantity
500
Supply Voltage - Max
3.6 V
Supply Voltage - Min
3 V
C8051F120/1/2/3/4/5/6/7
C8051F130/1/2/3
Figure 19.2 shows a typical SMBus configuration. The SMBus0 interface will work at any voltage between
3.0 and 5.0 V and different devices on the bus may operate at different voltage levels. The bi-directional
SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage
through a pullup resistor or similar circuit. Every device connected to the bus must have an open-drain or
open-collector output for both the SCL and SDA lines, so that both are pulled high when the bus is free.
The maximum number of devices on the bus is limited only by the requirement that the rise and fall times
on the bus will not exceed 300 ns and 1000 ns, respectively.
19.1. Supporting Documents
It is assumed the reader is familiar with or has access to the following supporting documents:
19.2. SMBus Protocol
Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave
receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ).
The master device initiates both types of data transfers and provides the serial clock pulses on SCL. Note:
multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data
transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitra-
tion. Note that it is not necessary to specify one device as the master in a system; any device who trans-
mits a START and a slave address becomes the master for that transfer.
A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit
slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is
received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see
Figure 19.3). If the receiving device does not ACK, the transmitting device will read a “not acknowledge”
(NACK), which is a high SDA during a high SCL.
The direction bit (R/W) occupies the least-significant bit position of the address. The direction bit is set to
logic 1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation.
260
VDD = 5V
1. The I2C-bus and how to use it (including specifications), Philips Semiconductor.
2. The I2C-Bus Specification -- Version 2.0, Philips Semiconductor.
3. System Management Bus Specification -- Version 1.1, SBS Implementers Forum.
Figure 19.2. Typical SMBus Configuration
VDD = 3V
Master
Device
Rev. 1.4
Device 1
VDD = 5V
Slave
VDD = 3V
Device 2
Slave
SDA
SCL

Related parts for C8051F131R