S9S12XS128J1MAL Freescale Semiconductor, S9S12XS128J1MAL Datasheet - Page 341

IC MCU 16BIT 128KB FLSH 112LQFP

S9S12XS128J1MAL

Manufacturer Part Number
S9S12XS128J1MAL
Description
IC MCU 16BIT 128KB FLSH 112LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of S9S12XS128J1MAL

Core Processor
HCS12X
Core Size
16-Bit
Speed
40MHz
Connectivity
CAN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
91
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
8K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
1.72 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 125°C
Package / Case
112-LQFP
Processor Series
S12XS
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
8 KB
Interface Type
CAN, SCI, SPI
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
91
Number Of Timers
12
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
DEMO9S12XSFAME, EVB9S12XEP100
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 16 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S9S12XS128J1MAL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
11.4.4.2
The MSCAN module behaves as described within this specification in all special system operating modes.
Write restrictions which exist on specific registers in normal modes are lifted for test purposes in special
modes.
11.4.4.3
In all emulation modes, the MSCAN module behaves just like in normal system operating modes as
described within this specification.
11.4.4.4
In an optional CAN bus monitoring mode (listen-only), the CAN node is able to receive valid data frames
and valid remote frames, but it sends only “recessive” bits on the CAN bus. In addition, it cannot start a
transmission.
If the MAC sub-layer is required to send a “dominant” bit (ACK bit, overload flag, or active error flag), the
bit is rerouted internally so that the MAC sub-layer monitors this “dominant” bit, although the CAN bus
may remain in recessive state externally.
11.4.4.5
The MSCAN enters initialization mode when it is enabled (CANE=1).
When entering initialization mode during operation, any on-going transmission or reception is
immediately aborted and synchronization to the CAN bus is lost, potentially causing CAN protocol
violations. To protect the CAN bus system from fatal consequences of violations, the MSCAN
immediately drives TXCAN into a recessive state.
In initialization mode, the MSCAN is stopped. However, interface registers remain accessible. This mode
is used to reset the CANCTL0, CANRFLG, CANRIER, CANTFLG, CANTIER, CANTARQ,
CANTAAK, and CANTBSEL registers to their default values. In addition, the MSCAN enables the
configuration of the CANBTR0, CANBTR1 bit timing registers; CANIDAC; and the CANIDAR,
CANIDMR message filters. See
detailed description of the initialization mode.
Freescale Semiconductor
Special System Operating Modes
Emulation Modes
Listen-Only Mode
MSCAN Initialization Mode
The user is responsible for ensuring that the MSCAN is not active when
initialization mode is entered. The recommended procedure is to bring the
MSCAN into sleep mode (SLPRQ = 1 and SLPAK = 1) before setting the
INITRQ bit in the CANCTL0 register. Otherwise, the abort of an on-going
message can cause an error condition and can impact other CAN bus
devices.
Section 11.3.2.1, “MSCAN Control Register 0
S12XS Family Reference Manual Rev. 1.11
NOTE
Freescale’s Scalable Controller Area Network (S12MSCANV3)
(CANCTL0),” for a
341

Related parts for S9S12XS128J1MAL