ATMEGA16-16PU Atmel, ATMEGA16-16PU Datasheet - Page 269

IC AVR MCU 16K 16MHZ 5V 40DIP

ATMEGA16-16PU

Manufacturer Part Number
ATMEGA16-16PU
Description
IC AVR MCU 16K 16MHZ 5V 40DIP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA16-16PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Package
40PDIP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
32
Interface Type
TWI/SPI/USART
On-chip Adc
8-chx10-bit
Number Of Timers
3
Processor Series
ATMEGA16x
Core
AVR8
Data Ram Size
1 KB
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
16 MIPS
Eeprom Memory
512 Bytes
Input Output
32
Interface
JTAG/SPI/UART
Memory Type
Flash
Number Of Bits
8
Package Type
44-pin PDIP
Programmable Memory
16K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
4.5-5.5 V
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16-16PU
Manufacturer:
Atmel
Quantity:
140
Reading the Flash
Reading the EEPROM
Programming the Fuse Low
Bits
2466J–AVR–10/04
Figure 130. Programming the EEPROM Waveforms
The algorithm for reading the Flash memory is as follows (refer to “Programming the
Flash” on page 266 for details on Command and Address loading):
1. A: Load Command “0000 0010”.
2. G: Load Address High Byte ($00 - $FF)
3. B: Load Address Low Byte ($00 - $FF)
4. Set OE to “0”, and BS1 to “0”. The Flash word Low byte can now be read at
5. Set BS1 to “1”. The Flash word High byte can now be read at DATA.
6. Set OE to “1”.
The algorithm for reading the EEPROM memory is as follows (refer to “Programming the
Flash” on page 266 for details on Command and Address loading):
1. A: Load Command “0000 0011”.
2. G: Load Address High Byte ($00 - $FF)
3. B: Load Address Low Byte ($00 - $FF)
4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at
5. Set OE to “1”.
The algorithm for programming the Fuse Low bits is as follows (refer to “Programming
the Flash” on page 266 for details on Command and Data loading):
1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS1 to “0” and BS2 to “0”.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
RESET +12V
RDY/BSY
DATA.
DATA.
PAGEL
XTAL1
DATA
XA1
XA0
BS1
BS2
WR
OE
0x11
A
ADDR. HIGH
G
ADDR. LOW
B
DATA
C
XX
E
ADDR. LOW
B
DATA
K
C
E
XX
ATmega16(L)
L
269

Related parts for ATMEGA16-16PU